V1.54 ((socket 2 of 2) updated IP/TCP and XNS sources for 4.3BSD)

Keith Bostic bostic at OKEEFFE.BERKELEY.EDU
Tue Apr 5 13:18:34 AEST 1988


Subject: (socket 2 of 2) updated IP/TCP and XNS sources for 4.3BSD
Index: sys 4.3BSD

Description:
	This is number 9 of 11 total articles posted to the newsgroup
	comp.bugs.4bsd.ucb-fixes.  This archive is number 2 of the 2
	articles that make up the socket posting.

# This is a shell archive.  Save it in a file, remove anything before
# this line, and then unpack it by entering "sh file".  Note, it may
# create directories; files and directories will be owned by you and
# have default permissions.
#
# This archive contains:
#
#	sys
#	sys/sys_socket.c
#	sys/uipc_domain.c
#	sys/uipc_proto.c
#	sys/uipc_syscalls.c
#	sys/uipc_socket2.c
#
echo c - sys
mkdir sys > /dev/null 2>&1
echo x - sys/sys_socket.c
sed 's/^X//' >sys/sys_socket.c << 'END-of-sys/sys_socket.c'
X/*
X * Copyright (c) 1982, 1986 Regents of the University of California.
X * All rights reserved.
X *
X * Redistribution and use in source and binary forms are permitted
X * provided that this notice is preserved and that due credit is given
X * to the University of California at Berkeley. The name of the University
X * may not be used to endorse or promote products derived from this
X * software without specific prior written permission. This software
X * is provided ``as is'' without express or implied warranty.
X *
X *	@(#)sys_socket.c	7.2 (Berkeley) 3/31/88
X */
X
X#include "param.h"
X#include "systm.h"
X#include "dir.h"
X#include "user.h"
X#include "file.h"
X#include "mbuf.h"
X#include "protosw.h"
X#include "socket.h"
X#include "socketvar.h"
X#include "ioctl.h"
X#include "uio.h"
X#include "stat.h"
X
X#include "../net/if.h"
X#include "../net/route.h"
X
Xint	soo_rw(), soo_ioctl(), soo_select(), soo_close();
Xstruct	fileops socketops =
X    { soo_rw, soo_ioctl, soo_select, soo_close };
X
Xsoo_rw(fp, rw, uio)
X	struct file *fp;
X	enum uio_rw rw;
X	struct uio *uio;
X{
X	int soreceive(), sosend();
X
X	return (
X	    (*(rw==UIO_READ?soreceive:sosend))
X	      ((struct socket *)fp->f_data, 0, uio, 0, 0));
X}
X
Xsoo_ioctl(fp, cmd, data)
X	struct file *fp;
X	int cmd;
X	register caddr_t data;
X{
X	register struct socket *so = (struct socket *)fp->f_data;
X
X	switch (cmd) {
X
X	case FIONBIO:
X		if (*(int *)data)
X			so->so_state |= SS_NBIO;
X		else
X			so->so_state &= ~SS_NBIO;
X		return (0);
X
X	case FIOASYNC:
X		if (*(int *)data)
X			so->so_state |= SS_ASYNC;
X		else
X			so->so_state &= ~SS_ASYNC;
X		return (0);
X
X	case FIONREAD:
X		*(int *)data = so->so_rcv.sb_cc;
X		return (0);
X
X	case SIOCSPGRP:
X		so->so_pgrp = *(int *)data;
X		return (0);
X
X	case SIOCGPGRP:
X		*(int *)data = so->so_pgrp;
X		return (0);
X
X	case SIOCATMARK:
X		*(int *)data = (so->so_state&SS_RCVATMARK) != 0;
X		return (0);
X	}
X	/*
X	 * Interface/routing/protocol specific ioctls:
X	 * interface and routing ioctls should have a
X	 * different entry since a socket's unnecessary
X	 */
X#define	cmdbyte(x)	(((x) >> 8) & 0xff)
X	if (cmdbyte(cmd) == 'i')
X		return (ifioctl(so, cmd, data));
X	if (cmdbyte(cmd) == 'r')
X		return (rtioctl(cmd, data));
X	return ((*so->so_proto->pr_usrreq)(so, PRU_CONTROL, 
X	    (struct mbuf *)cmd, (struct mbuf *)data, (struct mbuf *)0));
X}
X
Xsoo_select(fp, which)
X	struct file *fp;
X	int which;
X{
X	register struct socket *so = (struct socket *)fp->f_data;
X	register int s = splnet();
X
X	switch (which) {
X
X	case FREAD:
X		if (soreadable(so)) {
X			splx(s);
X			return (1);
X		}
X		sbselqueue(&so->so_rcv);
X		break;
X
X	case FWRITE:
X		if (sowriteable(so)) {
X			splx(s);
X			return (1);
X		}
X		sbselqueue(&so->so_snd);
X		break;
X
X	case 0:
X		if (so->so_oobmark ||
X		    (so->so_state & SS_RCVATMARK)) {
X			splx(s);
X			return (1);
X		}
X		sbselqueue(&so->so_rcv);
X		break;
X	}
X	splx(s);
X	return (0);
X}
X
X/*ARGSUSED*/
Xsoo_stat(so, ub)
X	register struct socket *so;
X	register struct stat *ub;
X{
X
X	bzero((caddr_t)ub, sizeof (*ub));
X	return ((*so->so_proto->pr_usrreq)(so, PRU_SENSE,
X	    (struct mbuf *)ub, (struct mbuf *)0, 
X	    (struct mbuf *)0));
X}
X
Xsoo_close(fp)
X	struct file *fp;
X{
X	int error = 0;
X
X	if (fp->f_data)
X		error = soclose((struct socket *)fp->f_data);
X	fp->f_data = 0;
X	return (error);
X}
END-of-sys/sys_socket.c
echo x - sys/uipc_domain.c
sed 's/^X//' >sys/uipc_domain.c << 'END-of-sys/uipc_domain.c'
X/*
X * Copyright (c) 1982, 1986 Regents of the University of California.
X * All rights reserved.
X *
X * Redistribution and use in source and binary forms are permitted
X * provided that this notice is preserved and that due credit is given
X * to the University of California at Berkeley. The name of the University
X * may not be used to endorse or promote products derived from this
X * software without specific prior written permission. This software
X * is provided ``as is'' without express or implied warranty.
X *
X *	@(#)uipc_domain.c	7.2 (Berkeley) 12/30/87
X */
X
X#include "param.h"
X#include "socket.h"
X#include "protosw.h"
X#include "domain.h"
X#include "time.h"
X#include "kernel.h"
X
X#define	ADDDOMAIN(x)	{ \
X	extern struct domain x/**/domain; \
X	x/**/domain.dom_next = domains; \
X	domains = &x/**/domain; \
X}
X
Xdomaininit()
X{
X	register struct domain *dp;
X	register struct protosw *pr;
X
X#ifndef lint
X	ADDDOMAIN(unix);
X#ifdef INET
X	ADDDOMAIN(inet);
X#endif
X#ifdef NS
X	ADDDOMAIN(ns);
X#endif
X#include "imp.h"
X#if NIMP > 0
X	ADDDOMAIN(imp);
X#endif
X#endif
X
X	for (dp = domains; dp; dp = dp->dom_next) {
X		if (dp->dom_init)
X			(*dp->dom_init)();
X		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
X			if (pr->pr_init)
X				(*pr->pr_init)();
X	}
X	null_init();
X	pffasttimo();
X	pfslowtimo();
X}
X
Xstruct protosw *
Xpffindtype(family, type)
X	int family, type;
X{
X	register struct domain *dp;
X	register struct protosw *pr;
X
X	for (dp = domains; dp; dp = dp->dom_next)
X		if (dp->dom_family == family)
X			goto found;
X	return (0);
Xfound:
X	for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
X		if (pr->pr_type && pr->pr_type == type)
X			return (pr);
X	return (0);
X}
X
Xstruct protosw *
Xpffindproto(family, protocol, type)
X	int family, protocol, type;
X{
X	register struct domain *dp;
X	register struct protosw *pr;
X	struct protosw *maybe = 0;
X
X	if (family == 0)
X		return (0);
X	for (dp = domains; dp; dp = dp->dom_next)
X		if (dp->dom_family == family)
X			goto found;
X	return (0);
Xfound:
X	for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
X		if ((pr->pr_protocol == protocol) && (pr->pr_type == type))
X			return (pr);
X
X		if (type == SOCK_RAW && pr->pr_type == SOCK_RAW &&
X		    pr->pr_protocol == 0 && maybe == (struct protosw *)0)
X			maybe = pr;
X	}
X	return (maybe);
X}
X
Xpfctlinput(cmd, sa)
X	int cmd;
X	struct sockaddr *sa;
X{
X	register struct domain *dp;
X	register struct protosw *pr;
X
X	for (dp = domains; dp; dp = dp->dom_next)
X		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
X			if (pr->pr_ctlinput)
X				(*pr->pr_ctlinput)(cmd, sa);
X}
X
Xpfslowtimo()
X{
X	register struct domain *dp;
X	register struct protosw *pr;
X
X	for (dp = domains; dp; dp = dp->dom_next)
X		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
X			if (pr->pr_slowtimo)
X				(*pr->pr_slowtimo)();
X	timeout(pfslowtimo, (caddr_t)0, hz/2);
X}
X
Xpffasttimo()
X{
X	register struct domain *dp;
X	register struct protosw *pr;
X
X	for (dp = domains; dp; dp = dp->dom_next)
X		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
X			if (pr->pr_fasttimo)
X				(*pr->pr_fasttimo)();
X	timeout(pffasttimo, (caddr_t)0, hz/5);
X}
END-of-sys/uipc_domain.c
echo x - sys/uipc_proto.c
sed 's/^X//' >sys/uipc_proto.c << 'END-of-sys/uipc_proto.c'
X/*
X * Copyright (c) 1982, 1986 Regents of the University of California.
X * All rights reserved.
X *
X * Redistribution and use in source and binary forms are permitted
X * provided that this notice is preserved and that due credit is given
X * to the University of California at Berkeley. The name of the University
X * may not be used to endorse or promote products derived from this
X * software without specific prior written permission. This software
X * is provided ``as is'' without express or implied warranty.
X *
X *	@(#)uipc_proto.c	7.2 (Berkeley) 12/30/87
X */
X
X#include "param.h"
X#include "socket.h"
X#include "protosw.h"
X#include "domain.h"
X#include "mbuf.h"
X
X/*
X * Definitions of protocols supported in the UNIX domain.
X */
X
Xint	uipc_usrreq();
Xint	raw_init(),raw_usrreq(),raw_input(),raw_ctlinput();
Xextern	struct domain unixdomain;		/* or at least forward */
X
Xstruct protosw unixsw[] = {
X{ SOCK_STREAM,	&unixdomain,	0,	PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
X  0,		0,		0,		0,
X  uipc_usrreq,
X  0,		0,		0,		0,
X},
X{ SOCK_DGRAM,	&unixdomain,	0,		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
X  0,		0,		0,		0,
X  uipc_usrreq,
X  0,		0,		0,		0,
X},
X{ 0,		0,		0,		0,
X  raw_input,	0,		raw_ctlinput,	0,
X  raw_usrreq,
X  raw_init,	0,		0,		0,
X}
X};
X
Xint	unp_externalize(), unp_dispose();
X
Xstruct domain unixdomain =
X    { AF_UNIX, "unix", 0, unp_externalize, unp_dispose,
X      unixsw, &unixsw[sizeof(unixsw)/sizeof(unixsw[0])] };
END-of-sys/uipc_proto.c
echo x - sys/uipc_syscalls.c
sed 's/^X//' >sys/uipc_syscalls.c << 'END-of-sys/uipc_syscalls.c'
X/*
X * Copyright (c) 1982, 1986 Regents of the University of California.
X * All rights reserved.
X *
X * Redistribution and use in source and binary forms are permitted
X * provided that this notice is preserved and that due credit is given
X * to the University of California at Berkeley. The name of the University
X * may not be used to endorse or promote products derived from this
X * software without specific prior written permission. This software
X * is provided ``as is'' without express or implied warranty.
X *
X *	@(#)uipc_syscalls.c	7.4 (Berkeley) 1/20/88
X */
X
X#include "param.h"
X#include "dir.h"
X#include "user.h"
X#include "file.h"
X#include "buf.h"
X#include "mbuf.h"
X#include "protosw.h"
X#include "socket.h"
X#include "socketvar.h"
X
X/*
X * System call interface to the socket abstraction.
X */
X
Xstruct	file *getsock();
Xextern	struct fileops socketops;
X
Xsocket()
X{
X	register struct a {
X		int	domain;
X		int	type;
X		int	protocol;
X	} *uap = (struct a *)u.u_ap;
X	struct socket *so;
X	register struct file *fp;
X
X	if ((fp = falloc()) == NULL)
X		return;
X	fp->f_flag = FREAD|FWRITE;
X	fp->f_type = DTYPE_SOCKET;
X	fp->f_ops = &socketops;
X	u.u_error = socreate(uap->domain, &so, uap->type, uap->protocol);
X	if (u.u_error)
X		goto bad;
X	fp->f_data = (caddr_t)so;
X	return;
Xbad:
X	u.u_ofile[u.u_r.r_val1] = 0;
X	fp->f_count = 0;
X}
X
Xbind()
X{
X	register struct a {
X		int	s;
X		caddr_t	name;
X		int	namelen;
X	} *uap = (struct a *)u.u_ap;
X	register struct file *fp;
X	struct mbuf *nam;
X
X	fp = getsock(uap->s);
X	if (fp == 0)
X		return;
X	u.u_error = sockargs(&nam, uap->name, uap->namelen, MT_SONAME);
X	if (u.u_error)
X		return;
X	u.u_error = sobind((struct socket *)fp->f_data, nam);
X	m_freem(nam);
X}
X
Xlisten()
X{
X	register struct a {
X		int	s;
X		int	backlog;
X	} *uap = (struct a *)u.u_ap;
X	register struct file *fp;
X
X	fp = getsock(uap->s);
X	if (fp == 0)
X		return;
X	u.u_error = solisten((struct socket *)fp->f_data, uap->backlog);
X}
X
Xaccept()
X{
X	register struct a {
X		int	s;
X		caddr_t	name;
X		int	*anamelen;
X	} *uap = (struct a *)u.u_ap;
X	register struct file *fp;
X	struct mbuf *nam;
X	int namelen;
X	int s;
X	register struct socket *so;
X
X	if (uap->name == 0)
X		goto noname;
X	u.u_error = copyin((caddr_t)uap->anamelen, (caddr_t)&namelen,
X		sizeof (namelen));
X	if (u.u_error)
X		return;
X	if (useracc((caddr_t)uap->name, (u_int)namelen, B_WRITE) == 0) {
X		u.u_error = EFAULT;
X		return;
X	}
Xnoname:
X	fp = getsock(uap->s);
X	if (fp == 0)
X		return;
X	s = splnet();
X	so = (struct socket *)fp->f_data;
X	if ((so->so_options & SO_ACCEPTCONN) == 0) {
X		u.u_error = EINVAL;
X		splx(s);
X		return;
X	}
X	if ((so->so_state & SS_NBIO) && so->so_qlen == 0) {
X		u.u_error = EWOULDBLOCK;
X		splx(s);
X		return;
X	}
X	while (so->so_qlen == 0 && so->so_error == 0) {
X		if (so->so_state & SS_CANTRCVMORE) {
X			so->so_error = ECONNABORTED;
X			break;
X		}
X		sleep((caddr_t)&so->so_timeo, PZERO+1);
X	}
X	if (so->so_error) {
X		u.u_error = so->so_error;
X		so->so_error = 0;
X		splx(s);
X		return;
X	}
X	if (ufalloc(0) < 0) {
X		splx(s);
X		return;
X	}
X	fp = falloc();
X	if (fp == 0) {
X		u.u_ofile[u.u_r.r_val1] = 0;
X		splx(s);
X		return;
X	}
X	{ struct socket *aso = so->so_q;
X	  if (soqremque(aso, 1) == 0)
X		panic("accept");
X	  so = aso;
X	}
X	fp->f_type = DTYPE_SOCKET;
X	fp->f_flag = FREAD|FWRITE;
X	fp->f_ops = &socketops;
X	fp->f_data = (caddr_t)so;
X	nam = m_get(M_WAIT, MT_SONAME);
X	(void) soaccept(so, nam);
X	if (uap->name) {
X		if (namelen > nam->m_len)
X			namelen = nam->m_len;
X		/* SHOULD COPY OUT A CHAIN HERE */
X		(void) copyout(mtod(nam, caddr_t), (caddr_t)uap->name,
X		    (u_int)namelen);
X		(void) copyout((caddr_t)&namelen, (caddr_t)uap->anamelen,
X		    sizeof (*uap->anamelen));
X	}
X	m_freem(nam);
X	splx(s);
X}
X
Xconnect()
X{
X	register struct a {
X		int	s;
X		caddr_t	name;
X		int	namelen;
X	} *uap = (struct a *)u.u_ap;
X	register struct file *fp;
X	register struct socket *so;
X	struct mbuf *nam;
X	int s;
X
X	fp = getsock(uap->s);
X	if (fp == 0)
X		return;
X	so = (struct socket *)fp->f_data;
X	if ((so->so_state & SS_NBIO) &&
X	    (so->so_state & SS_ISCONNECTING)) {
X		u.u_error = EALREADY;
X		return;
X	}
X	u.u_error = sockargs(&nam, uap->name, uap->namelen, MT_SONAME);
X	if (u.u_error)
X		return;
X	u.u_error = soconnect(so, nam);
X	if (u.u_error)
X		goto bad;
X	if ((so->so_state & SS_NBIO) &&
X	    (so->so_state & SS_ISCONNECTING)) {
X		u.u_error = EINPROGRESS;
X		m_freem(nam);
X		return;
X	}
X	s = splnet();
X	if (setjmp(&u.u_qsave)) {
X		if (u.u_error == 0)
X			u.u_error = EINTR;
X		goto bad2;
X	}
X	while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0)
X		sleep((caddr_t)&so->so_timeo, PZERO+1);
X	u.u_error = so->so_error;
X	so->so_error = 0;
Xbad2:
X	splx(s);
Xbad:
X	so->so_state &= ~SS_ISCONNECTING;
X	m_freem(nam);
X}
X
Xsocketpair()
X{
X	register struct a {
X		int	domain;
X		int	type;
X		int	protocol;
X		int	*rsv;
X	} *uap = (struct a *)u.u_ap;
X	register struct file *fp1, *fp2;
X	struct socket *so1, *so2;
X	int sv[2];
X
X	if (useracc((caddr_t)uap->rsv, 2 * sizeof (int), B_WRITE) == 0) {
X		u.u_error = EFAULT;
X		return;
X	}
X	u.u_error = socreate(uap->domain, &so1, uap->type, uap->protocol);
X	if (u.u_error)
X		return;
X	u.u_error = socreate(uap->domain, &so2, uap->type, uap->protocol);
X	if (u.u_error)
X		goto free;
X	fp1 = falloc();
X	if (fp1 == NULL)
X		goto free2;
X	sv[0] = u.u_r.r_val1;
X	fp1->f_flag = FREAD|FWRITE;
X	fp1->f_type = DTYPE_SOCKET;
X	fp1->f_ops = &socketops;
X	fp1->f_data = (caddr_t)so1;
X	fp2 = falloc();
X	if (fp2 == NULL)
X		goto free3;
X	fp2->f_flag = FREAD|FWRITE;
X	fp2->f_type = DTYPE_SOCKET;
X	fp2->f_ops = &socketops;
X	fp2->f_data = (caddr_t)so2;
X	sv[1] = u.u_r.r_val1;
X	u.u_error = soconnect2(so1, so2);
X	if (u.u_error)
X		goto free4;
X	if (uap->type == SOCK_DGRAM) {
X		/*
X		 * Datagram socket connection is asymmetric.
X		 */
X		 u.u_error = soconnect2(so2, so1);
X		 if (u.u_error)
X			goto free4;
X	}
X	u.u_r.r_val1 = 0;
X	(void) copyout((caddr_t)sv, (caddr_t)uap->rsv, 2 * sizeof (int));
X	return;
Xfree4:
X	fp2->f_count = 0;
X	u.u_ofile[sv[1]] = 0;
Xfree3:
X	fp1->f_count = 0;
X	u.u_ofile[sv[0]] = 0;
Xfree2:
X	(void)soclose(so2);
Xfree:
X	(void)soclose(so1);
X}
X
Xsendto()
X{
X	register struct a {
X		int	s;
X		caddr_t	buf;
X		int	len;
X		int	flags;
X		caddr_t	to;
X		int	tolen;
X	} *uap = (struct a *)u.u_ap;
X	struct msghdr msg;
X	struct iovec aiov;
X
X	msg.msg_name = uap->to;
X	msg.msg_namelen = uap->tolen;
X	msg.msg_iov = &aiov;
X	msg.msg_iovlen = 1;
X	aiov.iov_base = uap->buf;
X	aiov.iov_len = uap->len;
X	msg.msg_accrights = 0;
X	msg.msg_accrightslen = 0;
X	sendit(uap->s, &msg, uap->flags);
X}
X
Xsend()
X{
X	register struct a {
X		int	s;
X		caddr_t	buf;
X		int	len;
X		int	flags;
X	} *uap = (struct a *)u.u_ap;
X	struct msghdr msg;
X	struct iovec aiov;
X
X	msg.msg_name = 0;
X	msg.msg_namelen = 0;
X	msg.msg_iov = &aiov;
X	msg.msg_iovlen = 1;
X	aiov.iov_base = uap->buf;
X	aiov.iov_len = uap->len;
X	msg.msg_accrights = 0;
X	msg.msg_accrightslen = 0;
X	sendit(uap->s, &msg, uap->flags);
X}
X
Xsendmsg()
X{
X	register struct a {
X		int	s;
X		caddr_t	msg;
X		int	flags;
X	} *uap = (struct a *)u.u_ap;
X	struct msghdr msg;
X	struct iovec aiov[MSG_MAXIOVLEN];
X
X	u.u_error = copyin(uap->msg, (caddr_t)&msg, sizeof (msg));
X	if (u.u_error)
X		return;
X	if ((u_int)msg.msg_iovlen >= sizeof (aiov) / sizeof (aiov[0])) {
X		u.u_error = EMSGSIZE;
X		return;
X	}
X	u.u_error =
X	    copyin((caddr_t)msg.msg_iov, (caddr_t)aiov,
X		(unsigned)(msg.msg_iovlen * sizeof (aiov[0])));
X	if (u.u_error)
X		return;
X	msg.msg_iov = aiov;
X	sendit(uap->s, &msg, uap->flags);
X}
X
Xsendit(s, mp, flags)
X	int s;
X	register struct msghdr *mp;
X	int flags;
X{
X	register struct file *fp;
X	struct uio auio;
X	register struct iovec *iov;
X	register int i;
X	struct mbuf *to, *rights;
X	int len;
X	
X	fp = getsock(s);
X	if (fp == 0)
X		return;
X	auio.uio_iov = mp->msg_iov;
X	auio.uio_iovcnt = mp->msg_iovlen;
X	auio.uio_segflg = UIO_USERSPACE;
X	auio.uio_offset = 0;			/* XXX */
X	auio.uio_resid = 0;
X	iov = mp->msg_iov;
X	for (i = 0; i < mp->msg_iovlen; i++, iov++) {
X		if (iov->iov_len < 0) {
X			u.u_error = EINVAL;
X			return;
X		}
X		if (iov->iov_len == 0)
X			continue;
X		if (useracc(iov->iov_base, (u_int)iov->iov_len, B_READ) == 0) {
X			u.u_error = EFAULT;
X			return;
X		}
X		auio.uio_resid += iov->iov_len;
X	}
X	if (mp->msg_name) {
X		u.u_error =
X		    sockargs(&to, mp->msg_name, mp->msg_namelen, MT_SONAME);
X		if (u.u_error)
X			return;
X	} else
X		to = 0;
X	if (mp->msg_accrights) {
X		u.u_error =
X		    sockargs(&rights, mp->msg_accrights, mp->msg_accrightslen,
X		    MT_RIGHTS);
X		if (u.u_error)
X			goto bad;
X	} else
X		rights = 0;
X	len = auio.uio_resid;
X	u.u_error =
X	    sosend((struct socket *)fp->f_data, to, &auio, flags, rights);
X	u.u_r.r_val1 = len - auio.uio_resid;
X	if (rights)
X		m_freem(rights);
Xbad:
X	if (to)
X		m_freem(to);
X}
X
Xrecvfrom()
X{
X	register struct a {
X		int	s;
X		caddr_t	buf;
X		int	len;
X		int	flags;
X		caddr_t	from;
X		int	*fromlenaddr;
X	} *uap = (struct a *)u.u_ap;
X	struct msghdr msg;
X	struct iovec aiov;
X	int len;
X
X	u.u_error = copyin((caddr_t)uap->fromlenaddr, (caddr_t)&len,
X	   sizeof (len));
X	if (u.u_error)
X		return;
X	msg.msg_name = uap->from;
X	msg.msg_namelen = len;
X	msg.msg_iov = &aiov;
X	msg.msg_iovlen = 1;
X	aiov.iov_base = uap->buf;
X	aiov.iov_len = uap->len;
X	msg.msg_accrights = 0;
X	msg.msg_accrightslen = 0;
X	recvit(uap->s, &msg, uap->flags, (caddr_t)uap->fromlenaddr, (caddr_t)0);
X}
X
Xrecv()
X{
X	register struct a {
X		int	s;
X		caddr_t	buf;
X		int	len;
X		int	flags;
X	} *uap = (struct a *)u.u_ap;
X	struct msghdr msg;
X	struct iovec aiov;
X
X	msg.msg_name = 0;
X	msg.msg_namelen = 0;
X	msg.msg_iov = &aiov;
X	msg.msg_iovlen = 1;
X	aiov.iov_base = uap->buf;
X	aiov.iov_len = uap->len;
X	msg.msg_accrights = 0;
X	msg.msg_accrightslen = 0;
X	recvit(uap->s, &msg, uap->flags, (caddr_t)0, (caddr_t)0);
X}
X
Xrecvmsg()
X{
X	register struct a {
X		int	s;
X		struct	msghdr *msg;
X		int	flags;
X	} *uap = (struct a *)u.u_ap;
X	struct msghdr msg;
X	struct iovec aiov[MSG_MAXIOVLEN];
X
X	u.u_error = copyin((caddr_t)uap->msg, (caddr_t)&msg, sizeof (msg));
X	if (u.u_error)
X		return;
X	if ((u_int)msg.msg_iovlen >= sizeof (aiov) / sizeof (aiov[0])) {
X		u.u_error = EMSGSIZE;
X		return;
X	}
X	u.u_error =
X	    copyin((caddr_t)msg.msg_iov, (caddr_t)aiov,
X		(unsigned)(msg.msg_iovlen * sizeof (aiov[0])));
X	if (u.u_error)
X		return;
X	msg.msg_iov = aiov;
X	if (msg.msg_accrights)
X		if (useracc((caddr_t)msg.msg_accrights,
X		    (unsigned)msg.msg_accrightslen, B_WRITE) == 0) {
X			u.u_error = EFAULT;
X			return;
X		}
X	recvit(uap->s, &msg, uap->flags,
X	    (caddr_t)&uap->msg->msg_namelen,
X	    (caddr_t)&uap->msg->msg_accrightslen);
X}
X
Xrecvit(s, mp, flags, namelenp, rightslenp)
X	int s;
X	register struct msghdr *mp;
X	int flags;
X	caddr_t namelenp, rightslenp;
X{
X	register struct file *fp;
X	struct uio auio;
X	register struct iovec *iov;
X	register int i;
X	struct mbuf *from, *rights;
X	int len;
X	
X	fp = getsock(s);
X	if (fp == 0)
X		return;
X	auio.uio_iov = mp->msg_iov;
X	auio.uio_iovcnt = mp->msg_iovlen;
X	auio.uio_segflg = UIO_USERSPACE;
X	auio.uio_offset = 0;			/* XXX */
X	auio.uio_resid = 0;
X	iov = mp->msg_iov;
X	for (i = 0; i < mp->msg_iovlen; i++, iov++) {
X		if (iov->iov_len < 0) {
X			u.u_error = EINVAL;
X			return;
X		}
X		if (iov->iov_len == 0)
X			continue;
X		if (useracc(iov->iov_base, (u_int)iov->iov_len, B_WRITE) == 0) {
X			u.u_error = EFAULT;
X			return;
X		}
X		auio.uio_resid += iov->iov_len;
X	}
X	len = auio.uio_resid;
X	u.u_error =
X	    soreceive((struct socket *)fp->f_data, &from, &auio,
X		flags, &rights);
X	u.u_r.r_val1 = len - auio.uio_resid;
X	if (mp->msg_name) {
X		len = mp->msg_namelen;
X		if (len <= 0 || from == 0)
X			len = 0;
X		else {
X			if (len > from->m_len)
X				len = from->m_len;
X			(void) copyout((caddr_t)mtod(from, caddr_t),
X			    (caddr_t)mp->msg_name, (unsigned)len);
X		}
X		(void) copyout((caddr_t)&len, namelenp, sizeof (int));
X	}
X	if (mp->msg_accrights) {
X		len = mp->msg_accrightslen;
X		if (len <= 0 || rights == 0)
X			len = 0;
X		else {
X			if (len > rights->m_len)
X				len = rights->m_len;
X			(void) copyout((caddr_t)mtod(rights, caddr_t),
X			    (caddr_t)mp->msg_accrights, (unsigned)len);
X		}
X		(void) copyout((caddr_t)&len, rightslenp, sizeof (int));
X	}
X	if (rights)
X		m_freem(rights);
X	if (from)
X		m_freem(from);
X}
X
Xshutdown()
X{
X	struct a {
X		int	s;
X		int	how;
X	} *uap = (struct a *)u.u_ap;
X	struct file *fp;
X
X	fp = getsock(uap->s);
X	if (fp == 0)
X		return;
X	u.u_error = soshutdown((struct socket *)fp->f_data, uap->how);
X}
X
Xsetsockopt()
X{
X	struct a {
X		int	s;
X		int	level;
X		int	name;
X		caddr_t	val;
X		int	valsize;
X	} *uap = (struct a *)u.u_ap;
X	struct file *fp;
X	struct mbuf *m = NULL;
X
X	fp = getsock(uap->s);
X	if (fp == 0)
X		return;
X	if (uap->valsize > MLEN) {
X		u.u_error = EINVAL;
X		return;
X	}
X	if (uap->val) {
X		m = m_get(M_WAIT, MT_SOOPTS);
X		if (m == NULL) {
X			u.u_error = ENOBUFS;
X			return;
X		}
X		u.u_error =
X		    copyin(uap->val, mtod(m, caddr_t), (u_int)uap->valsize);
X		if (u.u_error) {
X			(void) m_free(m);
X			return;
X		}
X		m->m_len = uap->valsize;
X	}
X	u.u_error =
X	    sosetopt((struct socket *)fp->f_data, uap->level, uap->name, m);
X}
X
Xgetsockopt()
X{
X	struct a {
X		int	s;
X		int	level;
X		int	name;
X		caddr_t	val;
X		int	*avalsize;
X	} *uap = (struct a *)u.u_ap;
X	struct file *fp;
X	struct mbuf *m = NULL;
X	int valsize;
X
X	fp = getsock(uap->s);
X	if (fp == 0)
X		return;
X	if (uap->val) {
X		u.u_error = copyin((caddr_t)uap->avalsize, (caddr_t)&valsize,
X			sizeof (valsize));
X		if (u.u_error)
X			return;
X	} else
X		valsize = 0;
X	u.u_error =
X	    sogetopt((struct socket *)fp->f_data, uap->level, uap->name, &m);
X	if (u.u_error)
X		goto bad;
X	if (uap->val && valsize && m != NULL) {
X		if (valsize > m->m_len)
X			valsize = m->m_len;
X		u.u_error = copyout(mtod(m, caddr_t), uap->val, (u_int)valsize);
X		if (u.u_error)
X			goto bad;
X		u.u_error = copyout((caddr_t)&valsize, (caddr_t)uap->avalsize,
X		    sizeof (valsize));
X	}
Xbad:
X	if (m != NULL)
X		(void) m_free(m);
X}
X
Xpipe()
X{
X	register struct file *rf, *wf;
X	struct socket *rso, *wso;
X	int r;
X
X	u.u_error = socreate(AF_UNIX, &rso, SOCK_STREAM, 0);
X	if (u.u_error)
X		return;
X	u.u_error = socreate(AF_UNIX, &wso, SOCK_STREAM, 0);
X	if (u.u_error)
X		goto free;
X	rf = falloc();
X	if (rf == NULL)
X		goto free2;
X	r = u.u_r.r_val1;
X	rf->f_flag = FREAD;
X	rf->f_type = DTYPE_SOCKET;
X	rf->f_ops = &socketops;
X	rf->f_data = (caddr_t)rso;
X	wf = falloc();
X	if (wf == NULL)
X		goto free3;
X	wf->f_flag = FWRITE;
X	wf->f_type = DTYPE_SOCKET;
X	wf->f_ops = &socketops;
X	wf->f_data = (caddr_t)wso;
X	u.u_r.r_val2 = u.u_r.r_val1;
X	u.u_r.r_val1 = r;
X	if (u.u_error = unp_connect2(wso, rso))
X		goto free4;
X	wso->so_state |= SS_CANTRCVMORE;
X	rso->so_state |= SS_CANTSENDMORE;
X	return;
Xfree4:
X	wf->f_count = 0;
X	u.u_ofile[u.u_r.r_val2] = 0;
Xfree3:
X	rf->f_count = 0;
X	u.u_ofile[r] = 0;
Xfree2:
X	(void)soclose(wso);
Xfree:
X	(void)soclose(rso);
X}
X
X/*
X * Get socket name.
X */
Xgetsockname()
X{
X	register struct a {
X		int	fdes;
X		caddr_t	asa;
X		int	*alen;
X	} *uap = (struct a *)u.u_ap;
X	register struct file *fp;
X	register struct socket *so;
X	struct mbuf *m;
X	int len;
X
X	fp = getsock(uap->fdes);
X	if (fp == 0)
X		return;
X	u.u_error = copyin((caddr_t)uap->alen, (caddr_t)&len, sizeof (len));
X	if (u.u_error)
X		return;
X	so = (struct socket *)fp->f_data;
X	m = m_getclr(M_WAIT, MT_SONAME);
X	if (m == NULL) {
X		u.u_error = ENOBUFS;
X		return;
X	}
X	u.u_error = (*so->so_proto->pr_usrreq)(so, PRU_SOCKADDR, 0, m, 0);
X	if (u.u_error)
X		goto bad;
X	if (len > m->m_len)
X		len = m->m_len;
X	u.u_error = copyout(mtod(m, caddr_t), (caddr_t)uap->asa, (u_int)len);
X	if (u.u_error)
X		goto bad;
X	u.u_error = copyout((caddr_t)&len, (caddr_t)uap->alen, sizeof (len));
Xbad:
X	m_freem(m);
X}
X
X/*
X * Get name of peer for connected socket.
X */
Xgetpeername()
X{
X	register struct a {
X		int	fdes;
X		caddr_t	asa;
X		int	*alen;
X	} *uap = (struct a *)u.u_ap;
X	register struct file *fp;
X	register struct socket *so;
X	struct mbuf *m;
X	int len;
X
X	fp = getsock(uap->fdes);
X	if (fp == 0)
X		return;
X	so = (struct socket *)fp->f_data;
X	if ((so->so_state & SS_ISCONNECTED) == 0) {
X		u.u_error = ENOTCONN;
X		return;
X	}
X	m = m_getclr(M_WAIT, MT_SONAME);
X	if (m == NULL) {
X		u.u_error = ENOBUFS;
X		return;
X	}
X	u.u_error = copyin((caddr_t)uap->alen, (caddr_t)&len, sizeof (len));
X	if (u.u_error)
X		return;
X	u.u_error = (*so->so_proto->pr_usrreq)(so, PRU_PEERADDR, 0, m, 0);
X	if (u.u_error)
X		goto bad;
X	if (len > m->m_len)
X		len = m->m_len;
X	u.u_error = copyout(mtod(m, caddr_t), (caddr_t)uap->asa, (u_int)len);
X	if (u.u_error)
X		goto bad;
X	u.u_error = copyout((caddr_t)&len, (caddr_t)uap->alen, sizeof (len));
Xbad:
X	m_freem(m);
X}
X
Xsockargs(aname, name, namelen, type)
X	struct mbuf **aname;
X	caddr_t name;
X	int namelen, type;
X{
X	register struct mbuf *m;
X	int error;
X
X	if ((u_int)namelen > MLEN)
X		return (EINVAL);
X	m = m_get(M_WAIT, type);
X	if (m == NULL)
X		return (ENOBUFS);
X	m->m_len = namelen;
X	error = copyin(name, mtod(m, caddr_t), (u_int)namelen);
X	if (error)
X		(void) m_free(m);
X	else
X		*aname = m;
X	return (error);
X}
X
Xstruct file *
Xgetsock(fdes)
X	int fdes;
X{
X	register struct file *fp;
X
X	fp = getf(fdes);
X	if (fp == NULL)
X		return (0);
X	if (fp->f_type != DTYPE_SOCKET) {
X		u.u_error = ENOTSOCK;
X		return (0);
X	}
X	return (fp);
X}
END-of-sys/uipc_syscalls.c
echo x - sys/uipc_socket2.c
sed 's/^X//' >sys/uipc_socket2.c << 'END-of-sys/uipc_socket2.c'
X/*
X * Copyright (c) 1982, 1986 Regents of the University of California.
X * All rights reserved.
X *
X * Redistribution and use in source and binary forms are permitted
X * provided that this notice is preserved and that due credit is given
X * to the University of California at Berkeley. The name of the University
X * may not be used to endorse or promote products derived from this
X * software without specific prior written permission. This software
X * is provided ``as is'' without express or implied warranty.
X *
X *	@(#)uipc_socket2.c	7.3 (Berkeley) 1/28/88
X */
X
X#include "param.h"
X#include "systm.h"
X#include "dir.h"
X#include "user.h"
X#include "proc.h"
X#include "file.h"
X#include "inode.h"
X#include "buf.h"
X#include "mbuf.h"
X#include "protosw.h"
X#include "socket.h"
X#include "socketvar.h"
X
X/*
X * Primitive routines for operating on sockets and socket buffers
X */
X
X/*
X * Procedures to manipulate state flags of socket
X * and do appropriate wakeups.  Normal sequence from the
X * active (originating) side is that soisconnecting() is
X * called during processing of connect() call,
X * resulting in an eventual call to soisconnected() if/when the
X * connection is established.  When the connection is torn down
X * soisdisconnecting() is called during processing of disconnect() call,
X * and soisdisconnected() is called when the connection to the peer
X * is totally severed.  The semantics of these routines are such that
X * connectionless protocols can call soisconnected() and soisdisconnected()
X * only, bypassing the in-progress calls when setting up a ``connection''
X * takes no time.
X *
X * From the passive side, a socket is created with
X * two queues of sockets: so_q0 for connections in progress
X * and so_q for connections already made and awaiting user acceptance.
X * As a protocol is preparing incoming connections, it creates a socket
X * structure queued on so_q0 by calling sonewconn().  When the connection
X * is established, soisconnected() is called, and transfers the
X * socket structure to so_q, making it available to accept().
X * 
X * If a socket is closed with sockets on either
X * so_q0 or so_q, these sockets are dropped.
X *
X * If higher level protocols are implemented in
X * the kernel, the wakeups done here will sometimes
X * cause software-interrupt process scheduling.
X */
X
Xsoisconnecting(so)
X	register struct socket *so;
X{
X
X	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
X	so->so_state |= SS_ISCONNECTING;
X	wakeup((caddr_t)&so->so_timeo);
X}
X
Xsoisconnected(so)
X	register struct socket *so;
X{
X	register struct socket *head = so->so_head;
X
X	if (head) {
X		if (soqremque(so, 0) == 0)
X			panic("soisconnected");
X		soqinsque(head, so, 1);
X		sorwakeup(head);
X		wakeup((caddr_t)&head->so_timeo);
X	}
X	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
X	so->so_state |= SS_ISCONNECTED;
X	wakeup((caddr_t)&so->so_timeo);
X	sorwakeup(so);
X	sowwakeup(so);
X}
X
Xsoisdisconnecting(so)
X	register struct socket *so;
X{
X
X	so->so_state &= ~SS_ISCONNECTING;
X	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
X	wakeup((caddr_t)&so->so_timeo);
X	sowwakeup(so);
X	sorwakeup(so);
X}
X
Xsoisdisconnected(so)
X	register struct socket *so;
X{
X
X	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
X	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
X	wakeup((caddr_t)&so->so_timeo);
X	sowwakeup(so);
X	sorwakeup(so);
X}
X
X/*
X * When an attempt at a new connection is noted on a socket
X * which accepts connections, sonewconn is called.  If the
X * connection is possible (subject to space constraints, etc.)
X * then we allocate a new structure, propoerly linked into the
X * data structure of the original socket, and return this.
X */
Xstruct socket *
Xsonewconn(head)
X	register struct socket *head;
X{
X	register struct socket *so;
X	register struct mbuf *m;
X
X	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
X		goto bad;
X	m = m_getclr(M_DONTWAIT, MT_SOCKET);
X	if (m == NULL)
X		goto bad;
X	so = mtod(m, struct socket *);
X	so->so_type = head->so_type;
X	so->so_options = head->so_options &~ SO_ACCEPTCONN;
X	so->so_linger = head->so_linger;
X	so->so_state = head->so_state | SS_NOFDREF;
X	so->so_proto = head->so_proto;
X	so->so_timeo = head->so_timeo;
X	so->so_pgrp = head->so_pgrp;
X	soqinsque(head, so, 0);
X	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
X	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
X		(void) soqremque(so, 0);
X		(void) m_free(m);
X		goto bad;
X	}
X	return (so);
Xbad:
X	return ((struct socket *)0);
X}
X
Xsoqinsque(head, so, q)
X	register struct socket *head, *so;
X	int q;
X{
X
X	so->so_head = head;
X	if (q == 0) {
X		head->so_q0len++;
X		so->so_q0 = head->so_q0;
X		head->so_q0 = so;
X	} else {
X		head->so_qlen++;
X		so->so_q = head->so_q;
X		head->so_q = so;
X	}
X}
X
Xsoqremque(so, q)
X	register struct socket *so;
X	int q;
X{
X	register struct socket *head, *prev, *next;
X
X	head = so->so_head;
X	prev = head;
X	for (;;) {
X		next = q ? prev->so_q : prev->so_q0;
X		if (next == so)
X			break;
X		if (next == head)
X			return (0);
X		prev = next;
X	}
X	if (q == 0) {
X		prev->so_q0 = next->so_q0;
X		head->so_q0len--;
X	} else {
X		prev->so_q = next->so_q;
X		head->so_qlen--;
X	}
X	next->so_q0 = next->so_q = 0;
X	next->so_head = 0;
X	return (1);
X}
X
X/*
X * Socantsendmore indicates that no more data will be sent on the
X * socket; it would normally be applied to a socket when the user
X * informs the system that no more data is to be sent, by the protocol
X * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
X * will be received, and will normally be applied to the socket by a
X * protocol when it detects that the peer will send no more data.
X * Data queued for reading in the socket may yet be read.
X */
X
Xsocantsendmore(so)
X	struct socket *so;
X{
X
X	so->so_state |= SS_CANTSENDMORE;
X	sowwakeup(so);
X}
X
Xsocantrcvmore(so)
X	struct socket *so;
X{
X
X	so->so_state |= SS_CANTRCVMORE;
X	sorwakeup(so);
X}
X
X/*
X * Socket select/wakeup routines.
X */
X
X/*
X * Queue a process for a select on a socket buffer.
X */
Xsbselqueue(sb)
X	struct sockbuf *sb;
X{
X	register struct proc *p;
X
X	if ((p = sb->sb_sel) && p->p_wchan == (caddr_t)&selwait)
X		sb->sb_flags |= SB_COLL;
X	else
X		sb->sb_sel = u.u_procp;
X}
X
X/*
X * Wait for data to arrive at/drain from a socket buffer.
X */
Xsbwait(sb)
X	struct sockbuf *sb;
X{
X
X	sb->sb_flags |= SB_WAIT;
X	sleep((caddr_t)&sb->sb_cc, PZERO+1);
X}
X
X/*
X * Wakeup processes waiting on a socket buffer.
X */
Xsbwakeup(sb)
X	register struct sockbuf *sb;
X{
X
X	if (sb->sb_sel) {
X		selwakeup(sb->sb_sel, sb->sb_flags & SB_COLL);
X		sb->sb_sel = 0;
X		sb->sb_flags &= ~SB_COLL;
X	}
X	if (sb->sb_flags & SB_WAIT) {
X		sb->sb_flags &= ~SB_WAIT;
X		wakeup((caddr_t)&sb->sb_cc);
X	}
X}
X
X/*
X * Wakeup socket readers and writers.
X * Do asynchronous notification via SIGIO
X * if the socket has the SS_ASYNC flag set.
X */
Xsowakeup(so, sb)
X	register struct socket *so;
X	struct sockbuf *sb;
X{
X	register struct proc *p;
X
X	sbwakeup(sb);
X	if (so->so_state & SS_ASYNC) {
X		if (so->so_pgrp < 0)
X			gsignal(-so->so_pgrp, SIGIO);
X		else if (so->so_pgrp > 0 && (p = pfind(so->so_pgrp)) != 0)
X			psignal(p, SIGIO);
X	}
X}
X
X/*
X * Socket buffer (struct sockbuf) utility routines.
X *
X * Each socket contains two socket buffers: one for sending data and
X * one for receiving data.  Each buffer contains a queue of mbufs,
X * information about the number of mbufs and amount of data in the
X * queue, and other fields allowing select() statements and notification
X * on data availability to be implemented.
X *
X * Data stored in a socket buffer is maintained as a list of records.
X * Each record is a list of mbufs chained together with the m_next
X * field.  Records are chained together with the m_act field. The upper
X * level routine soreceive() expects the following conventions to be
X * observed when placing information in the receive buffer:
X *
X * 1. If the protocol requires each message be preceded by the sender's
X *    name, then a record containing that name must be present before
X *    any associated data (mbuf's must be of type MT_SONAME).
X * 2. If the protocol supports the exchange of ``access rights'' (really
X *    just additional data associated with the message), and there are
X *    ``rights'' to be received, then a record containing this data
X *    should be present (mbuf's must be of type MT_RIGHTS).
X * 3. If a name or rights record exists, then it must be followed by
X *    a data record, perhaps of zero length.
X *
X * Before using a new socket structure it is first necessary to reserve
X * buffer space to the socket, by calling sbreserve().  This should commit
X * some of the available buffer space in the system buffer pool for the
X * socket (currently, it does nothing but enforce limits).  The space
X * should be released by calling sbrelease() when the socket is destroyed.
X */
X
Xsoreserve(so, sndcc, rcvcc)
X	register struct socket *so;
X	u_long sndcc, rcvcc;
X{
X
X	if (sbreserve(&so->so_snd, sndcc) == 0)
X		goto bad;
X	if (sbreserve(&so->so_rcv, rcvcc) == 0)
X		goto bad2;
X	return (0);
Xbad2:
X	sbrelease(&so->so_snd);
Xbad:
X	return (ENOBUFS);
X}
X
X/*
X * Allot mbufs to a sockbuf.
X * Attempt to scale cc so that mbcnt doesn't become limiting
X * if buffering efficiency is near the normal case.
X */
Xsbreserve(sb, cc)
X	struct sockbuf *sb;
X	u_long cc;
X{
X
X	if (cc > (u_long)SB_MAX * CLBYTES / (2 * MSIZE + CLBYTES))
X		return (0);
X	sb->sb_hiwat = cc;
X	sb->sb_mbmax = MIN(cc * 2, SB_MAX);
X	return (1);
X}
X
X/*
X * Free mbufs held by a socket, and reserved mbuf space.
X */
Xsbrelease(sb)
X	struct sockbuf *sb;
X{
X
X	sbflush(sb);
X	sb->sb_hiwat = sb->sb_mbmax = 0;
X}
X
X/*
X * Routines to add and remove
X * data from an mbuf queue.
X *
X * The routines sbappend() or sbappendrecord() are normally called to
X * append new mbufs to a socket buffer, after checking that adequate
X * space is available, comparing the function sbspace() with the amount
X * of data to be added.  sbappendrecord() differs from sbappend() in
X * that data supplied is treated as the beginning of a new record.
X * To place a sender's address, optional access rights, and data in a
X * socket receive buffer, sbappendaddr() should be used.  To place
X * access rights and data in a socket receive buffer, sbappendrights()
X * should be used.  In either case, the new data begins a new record.
X * Note that unlike sbappend() and sbappendrecord(), these routines check
X * for the caller that there will be enough space to store the data.
X * Each fails if there is not enough space, or if it cannot find mbufs
X * to store additional information in.
X *
X * Reliable protocols may use the socket send buffer to hold data
X * awaiting acknowledgement.  Data is normally copied from a socket
X * send buffer in a protocol with m_copy for output to a peer,
X * and then removing the data from the socket buffer with sbdrop()
X * or sbdroprecord() when the data is acknowledged by the peer.
X */
X
X/*
X * Append mbuf chain m to the last record in the
X * socket buffer sb.  The additional space associated
X * the mbuf chain is recorded in sb.  Empty mbufs are
X * discarded and mbufs are compacted where possible.
X */
Xsbappend(sb, m)
X	struct sockbuf *sb;
X	struct mbuf *m;
X{
X	register struct mbuf *n;
X
X	if (m == 0)
X		return;
X	if (n = sb->sb_mb) {
X		while (n->m_act)
X			n = n->m_act;
X		while (n->m_next)
X			n = n->m_next;
X	}
X	sbcompress(sb, m, n);
X}
X
X/*
X * As above, except the mbuf chain
X * begins a new record.
X */
Xsbappendrecord(sb, m0)
X	register struct sockbuf *sb;
X	register struct mbuf *m0;
X{
X	register struct mbuf *m;
X
X	if (m0 == 0)
X		return;
X	if (m = sb->sb_mb)
X		while (m->m_act)
X			m = m->m_act;
X	/*
X	 * Put the first mbuf on the queue.
X	 * Note this permits zero length records.
X	 */
X	sballoc(sb, m0);
X	if (m)
X		m->m_act = m0;
X	else
X		sb->sb_mb = m0;
X	m = m0->m_next;
X	m0->m_next = 0;
X	sbcompress(sb, m, m0);
X}
X
X/*
X * Append address and data, and optionally, rights
X * to the receive queue of a socket.  Return 0 if
X * no space in sockbuf or insufficient mbufs.
X */
Xsbappendaddr(sb, asa, m0, rights0)
X	register struct sockbuf *sb;
X	struct sockaddr *asa;
X	struct mbuf *rights0, *m0;
X{
X	register struct mbuf *m, *n;
X	int space = sizeof (*asa);
X
X	for (m = m0; m; m = m->m_next)
X		space += m->m_len;
X	if (rights0)
X		space += rights0->m_len;
X	if (space > sbspace(sb))
X		return (0);
X	MGET(m, M_DONTWAIT, MT_SONAME);
X	if (m == 0)
X		return (0);
X	*mtod(m, struct sockaddr *) = *asa;
X	m->m_len = sizeof (*asa);
X	if (rights0 && rights0->m_len) {
X		m->m_next = m_copy(rights0, 0, rights0->m_len);
X		if (m->m_next == 0) {
X			m_freem(m);
X			return (0);
X		}
X		sballoc(sb, m->m_next);
X	}
X	sballoc(sb, m);
X	if (n = sb->sb_mb) {
X		while (n->m_act)
X			n = n->m_act;
X		n->m_act = m;
X	} else
X		sb->sb_mb = m;
X	if (m->m_next)
X		m = m->m_next;
X	if (m0)
X		sbcompress(sb, m0, m);
X	return (1);
X}
X
Xsbappendrights(sb, m0, rights)
X	struct sockbuf *sb;
X	struct mbuf *rights, *m0;
X{
X	register struct mbuf *m, *n;
X	int space = 0;
X
X	if (rights == 0)
X		panic("sbappendrights");
X	for (m = m0; m; m = m->m_next)
X		space += m->m_len;
X	space += rights->m_len;
X	if (space > sbspace(sb))
X		return (0);
X	m = m_copy(rights, 0, rights->m_len);
X	if (m == 0)
X		return (0);
X	sballoc(sb, m);
X	if (n = sb->sb_mb) {
X		while (n->m_act)
X			n = n->m_act;
X		n->m_act = m;
X	} else
X		sb->sb_mb = m;
X	if (m0)
X		sbcompress(sb, m0, m);
X	return (1);
X}
X
X/*
X * Compress mbuf chain m into the socket
X * buffer sb following mbuf n.  If n
X * is null, the buffer is presumed empty.
X */
Xsbcompress(sb, m, n)
X	register struct sockbuf *sb;
X	register struct mbuf *m, *n;
X{
X
X	while (m) {
X		if (m->m_len == 0) {
X			m = m_free(m);
X			continue;
X		}
X		if (n && n->m_off <= MMAXOFF && m->m_off <= MMAXOFF &&
X		    (n->m_off + n->m_len + m->m_len) <= MMAXOFF &&
X		    n->m_type == m->m_type) {
X			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
X			    (unsigned)m->m_len);
X			n->m_len += m->m_len;
X			sb->sb_cc += m->m_len;
X			m = m_free(m);
X			continue;
X		}
X		sballoc(sb, m);
X		if (n)
X			n->m_next = m;
X		else
X			sb->sb_mb = m;
X		n = m;
X		m = m->m_next;
X		n->m_next = 0;
X	}
X}
X
X/*
X * Free all mbufs in a sockbuf.
X * Check that all resources are reclaimed.
X */
Xsbflush(sb)
X	register struct sockbuf *sb;
X{
X
X	if (sb->sb_flags & SB_LOCK)
X		panic("sbflush");
X	while (sb->sb_mbcnt)
X		sbdrop(sb, (int)sb->sb_cc);
X	if (sb->sb_cc || sb->sb_mbcnt || sb->sb_mb)
X		panic("sbflush 2");
X}
X
X/*
X * Drop data from (the front of) a sockbuf.
X */
Xsbdrop(sb, len)
X	register struct sockbuf *sb;
X	register int len;
X{
X	register struct mbuf *m, *mn;
X	struct mbuf *next;
X
X	next = (m = sb->sb_mb) ? m->m_act : 0;
X	while (len > 0) {
X		if (m == 0) {
X			if (next == 0)
X				panic("sbdrop");
X			m = next;
X			next = m->m_act;
X			continue;
X		}
X		if (m->m_len > len) {
X			m->m_len -= len;
X			m->m_off += len;
X			sb->sb_cc -= len;
X			break;
X		}
X		len -= m->m_len;
X		sbfree(sb, m);
X		MFREE(m, mn);
X		m = mn;
X	}
X	while (m && m->m_len == 0) {
X		sbfree(sb, m);
X		MFREE(m, mn);
X		m = mn;
X	}
X	if (m) {
X		sb->sb_mb = m;
X		m->m_act = next;
X	} else
X		sb->sb_mb = next;
X}
X
X/*
X * Drop a record off the front of a sockbuf
X * and move the next record to the front.
X */
Xsbdroprecord(sb)
X	register struct sockbuf *sb;
X{
X	register struct mbuf *m, *mn;
X
X	m = sb->sb_mb;
X	if (m) {
X		sb->sb_mb = m->m_act;
X		do {
X			sbfree(sb, m);
X			MFREE(m, mn);
X		} while (m = mn);
X	}
X}
END-of-sys/uipc_socket2.c
exit



More information about the Comp.bugs.4bsd.ucb-fixes mailing list