V1.52 ((netns 2 of 2) updated IP/TCP and XNS sources for 4.3BSD)

Keith Bostic bostic at OKEEFFE.BERKELEY.EDU
Tue Apr 5 13:18:22 AEST 1988


Subject: (netns 2 of 2) updated IP/TCP and XNS sources for 4.3BSD
Index: sys 4.3BSD

Description:
	This is number 7 of 11 total articles posted to the newsgroup
	comp.bugs.4bsd.ucb-fixes.  This archive is number 2 of the 2
	articles that make up the netns posting.

# This is a shell archive.  Save it in a file, remove anything before
# this line, and then unpack it by entering "sh file".  Note, it may
# create directories; files and directories will be owned by you and
# have default permissions.
#
# This archive contains:
#
#	netns
#	netns/sp.h
#	netns/spidp.h
#	netns/spp_debug.c
#	netns/spp_debug.h
#	netns/spp_usrreq.c
#	netns/spp_var.h
#
echo c - netns
mkdir netns > /dev/null 2>&1
echo x - netns/sp.h
sed 's/^X//' >netns/sp.h << 'END-of-netns/sp.h'
X/*
X * Copyright (c) 1984, 1985, 1986, 1987 Regents of the University of California.
X * All rights reserved.
X *
X * Redistribution and use in source and binary forms are permitted
X * provided that this notice is preserved and that due credit is given
X * to the University of California at Berkeley. The name of the University
X * may not be used to endorse or promote products derived from this
X * software without specific prior written permission. This software
X * is provided ``as is'' without express or implied warranty.
X *
X *      @(#)sp.h	7.2 (Berkeley) 1/20/88
X */
X
X/*
X * Definitions for Xerox NS style sequenced packet protocol
X */
X
Xstruct sphdr {
X	u_char	sp_cc;		/* connection control */
X	u_char	sp_dt;		/* datastream type */
X#define	SP_SP	0x80		/* system packet */
X#define	SP_SA	0x40		/* send acknowledgement */
X#define	SP_OB	0x20		/* attention (out of band data) */
X#define	SP_EM	0x10		/* end of message */
X	u_short	sp_sid;		/* source connection identifier */
X	u_short	sp_did;		/* destination connection identifier */
X	u_short	sp_seq;		/* sequence number */
X	u_short	sp_ack;		/* acknowledge number */
X	u_short	sp_alo;		/* allocation number */
X};
END-of-netns/sp.h
echo x - netns/spidp.h
sed 's/^X//' >netns/spidp.h << 'END-of-netns/spidp.h'
X/*
X * Copyright (c) 1984, 1985, 1986, 1987 Regents of the University of California.
X * All rights reserved.
X *
X * Redistribution and use in source and binary forms are permitted
X * provided that this notice is preserved and that due credit is given
X * to the University of California at Berkeley. The name of the University
X * may not be used to endorse or promote products derived from this
X * software without specific prior written permission. This software
X * is provided ``as is'' without express or implied warranty.
X *
X *      @(#)spidp.h	7.2 (Berkeley) 1/20/88
X */
X
X/*
X * Definitions for NS(tm) Internet Datagram Protocol
X * containing a Sequenced Packet Protocol packet.
X */
Xstruct spidp {
X	struct idp	si_i;
X	struct sphdr 	si_s;
X};
Xstruct spidp_q {
X	struct spidp_q	*si_next;
X	struct spidp_q	*si_prev;
X};
X#define SI(x)	((struct spidp *)x)
X#define si_sum	si_i.idp_sum
X#define si_len	si_i.idp_len
X#define si_tc	si_i.idp_tc
X#define si_pt	si_i.idp_pt
X#define si_dna	si_i.idp_dna
X#define si_sna	si_i.idp_sna
X#define si_sport	si_i.idp_sna.x_port
X#define si_cc	si_s.sp_cc
X#define si_dt	si_s.sp_dt
X#define si_sid	si_s.sp_sid
X#define si_did	si_s.sp_did
X#define si_seq	si_s.sp_seq
X#define si_ack	si_s.sp_ack
X#define si_alo	si_s.sp_alo
END-of-netns/spidp.h
echo x - netns/spp_debug.c
sed 's/^X//' >netns/spp_debug.c << 'END-of-netns/spp_debug.c'
X/*
X * Copyright (c) 1984, 1985, 1986, 1987 Regents of the University of California.
X * All rights reserved.
X *
X * Redistribution and use in source and binary forms are permitted
X * provided that this notice is preserved and that due credit is given
X * to the University of California at Berkeley. The name of the University
X * may not be used to endorse or promote products derived from this
X * software without specific prior written permission. This software
X * is provided ``as is'' without express or implied warranty.
X *
X *      @(#)spp_debug.c	7.4 (Berkeley) 3/12/88
X */
X
X#include "param.h"
X#include "systm.h"
X#include "mbuf.h"
X#include "socket.h"
X#include "socketvar.h"
X#include "protosw.h"
X#include "errno.h"
X
X#include "../net/route.h"
X#include "../net/if.h"
X#include "../netinet/tcp_fsm.h"
X
X#include "ns.h"
X#include "ns_pcb.h"
X#include "idp.h"
X#include "idp_var.h"
X#include "sp.h"
X#include "spidp.h"
X#define SPPTIMERS
X#include "spp_timer.h"
X#include "spp_var.h"
X#define	SANAMES
X#include "spp_debug.h"
X
Xint	sppconsdebug = 0;
X/*
X * spp debug routines
X */
Xspp_trace(act, ostate, sp, si, req)
X	short act;
X	u_char ostate;
X	struct sppcb *sp;
X	struct spidp *si;
X	int req;
X{
X#ifdef INET
X	u_short seq, ack, len, alo;
X	unsigned long iptime();
X	int flags;
X	struct spp_debug *sd = &spp_debug[spp_debx++];
X	extern char *prurequests[];
X	extern char *sanames[];
X	extern char *tcpstates[];
X	extern char *spptimers[];
X
X	if (spp_debx == SPP_NDEBUG)
X		spp_debx = 0;
X	sd->sd_time = iptime();
X	sd->sd_act = act;
X	sd->sd_ostate = ostate;
X	sd->sd_cb = (caddr_t)sp;
X	if (sp)
X		sd->sd_sp = *sp;
X	else
X		bzero((caddr_t)&sd->sd_sp, sizeof (*sp));
X	if (si)
X		sd->sd_si = *si;
X	else
X		bzero((caddr_t)&sd->sd_si, sizeof (*si));
X	sd->sd_req = req;
X	if (sppconsdebug == 0)
X		return;
X	if (ostate >= TCP_NSTATES) ostate = 0;
X	if (act >= SA_DROP) act = SA_DROP;
X	if (sp)
X		printf("%x %s:", sp, tcpstates[ostate]);
X	else
X		printf("???????? ");
X	printf("%s ", sanames[act]);
X	switch (act) {
X
X	case SA_RESPOND:
X	case SA_INPUT:
X	case SA_OUTPUT:
X	case SA_DROP:
X		if (si == 0)
X			break;
X		seq = si->si_seq;
X		ack = si->si_ack;
X		alo = si->si_alo;
X		len = si->si_len;
X		if (act == SA_OUTPUT) {
X			seq = ntohs(seq);
X			ack = ntohs(ack);
X			alo = ntohs(alo);
X			len = ntohs(len);
X		}
X#ifndef lint
X#define p1(f)  { printf("%s = %x, ", "f", f); }
X		p1(seq); p1(ack); p1(alo); p1(len);
X#endif
X		flags = si->si_cc;
X		if (flags) {
X			char *cp = "<";
X#ifndef lint
X#define pf(f) { if (flags&SP_/**/f) { printf("%s%s", cp, "f"); cp = ","; } }
X			pf(SP); pf(SA); pf(OB); pf(EM);
X#else
X			cp = cp;
X#endif
X			printf(">");
X		}
X#ifndef lint
X#define p2(f)  { printf("%s = %x, ", "f", si->si_/**/f); }
X		p2(sid);p2(did);p2(dt);p2(pt);
X#endif
X		ns_printhost(&si->si_sna);
X		ns_printhost(&si->si_dna);
X
X		if (act==SA_RESPOND) {
X			printf("idp_len = %x, ",
X				((struct idp *)si)->idp_len);
X		}
X		break;
X
X	case SA_USER:
X		printf("%s", prurequests[req&0xff]);
X		if ((req & 0xff) == PRU_SLOWTIMO)
X			printf("<%s>", spptimers[req>>8]);
X		break;
X	}
X	if (sp)
X		printf(" -> %s", tcpstates[sp->s_state]);
X	/* print out internal state of sp !?! */
X	printf("\n");
X	if (sp == 0)
X		return;
X#ifndef lint
X#define p3(f)  { printf("%s = %x, ", "f", sp->s_/**/f); }
X	printf("\t"); p3(rack);p3(ralo);p3(smax);p3(flags); printf("\n");
X#endif
X#endif
X}
END-of-netns/spp_debug.c
echo x - netns/spp_debug.h
sed 's/^X//' >netns/spp_debug.h << 'END-of-netns/spp_debug.h'
X/*
X * Copyright (c) 1984, 1985, 1986, 1987 Regents of the University of California.
X * All rights reserved.
X *
X * Redistribution and use in source and binary forms are permitted
X * provided that this notice is preserved and that due credit is given
X * to the University of California at Berkeley. The name of the University
X * may not be used to endorse or promote products derived from this
X * software without specific prior written permission. This software
X * is provided ``as is'' without express or implied warranty.
X *
X *      @(#)spp_debug.h	7.2 (Berkeley) 1/20/88
X */
X
Xstruct	spp_debug {
X	u_long	sd_time;
X	short	sd_act;
X	short	sd_ostate;
X	caddr_t	sd_cb;
X	short	sd_req;
X	struct	spidp sd_si;
X	struct	sppcb sd_sp;
X};
X
X#define	SA_INPUT 	0
X#define	SA_OUTPUT	1
X#define	SA_USER		2
X#define	SA_RESPOND	3
X#define	SA_DROP		4
X
X#ifdef SANAMES
Xchar	*sanames[] =
X    { "input", "output", "user", "respond", "drop" };
X#endif
X
X#define	SPP_NDEBUG 100
Xstruct	spp_debug spp_debug[SPP_NDEBUG];
Xint	spp_debx;
END-of-netns/spp_debug.h
echo x - netns/spp_usrreq.c
sed 's/^X//' >netns/spp_usrreq.c << 'END-of-netns/spp_usrreq.c'
X/*
X * Copyright (c) 1984, 1985, 1986, 1987 Regents of the University of California.
X * All rights reserved.
X *
X * Redistribution and use in source and binary forms are permitted
X * provided that this notice is preserved and that due credit is given
X * to the University of California at Berkeley. The name of the University
X * may not be used to endorse or promote products derived from this
X * software without specific prior written permission. This software
X * is provided ``as is'' without express or implied warranty.
X *
X *      @(#)spp_usrreq.c	7.6 (Berkeley) 3/12/88
X */
X
X#include "param.h"
X#include "systm.h"
X#include "dir.h"
X#include "user.h"
X#include "mbuf.h"
X#include "protosw.h"
X#include "socket.h"
X#include "socketvar.h"
X#include "errno.h"
X
X#include "../net/if.h"
X#include "../net/route.h"
X#include "../netinet/tcp_fsm.h"
X
X#include "ns.h"
X#include "ns_pcb.h"
X#include "idp.h"
X#include "idp_var.h"
X#include "ns_error.h"
X#include "sp.h"
X#include "spidp.h"
X#include "spp_timer.h"
X#include "spp_var.h"
X#include "spp_debug.h"
X
X/*
X * SP protocol implementation.
X */
Xspp_init()
X{
X
X	spp_iss = 1; /* WRONG !! should fish it out of TODR */
X}
Xstruct spidp spp_savesi;
Xint traceallspps = 0;
Xextern int sppconsdebug;
Xint spp_hardnosed;
Xint spp_use_delack = 0;
X
X/*ARGSUSED*/
Xspp_input(m, nsp, ifp)
X	register struct mbuf *m;
X	register struct nspcb *nsp;
X	struct ifnet *ifp;
X{
X	register struct sppcb *cb;
X	register struct spidp *si = mtod(m, struct spidp *);
X	register struct socket *so;
X	short ostate;
X	int dropsocket = 0;
X
X
X	sppstat.spps_rcvtotal++;
X	if (nsp == 0) {
X		panic("No nspcb in spp_input\n");
X		return;
X	}
X
X	cb = nstosppcb(nsp);
X	if (cb == 0) goto bad;
X
X	if (m->m_len < sizeof(*si)) {
X		if ((m = m_pullup(m, sizeof(*si))) == 0) {
X			sppstat.spps_rcvshort++;
X			return;
X		}
X		si = mtod(m, struct spidp *);
X	}
X	si->si_seq = ntohs(si->si_seq);
X	si->si_ack = ntohs(si->si_ack);
X	si->si_alo = ntohs(si->si_alo);
X
X	so = nsp->nsp_socket;
X	if (so->so_options & SO_DEBUG || traceallspps) {
X		ostate = cb->s_state;
X		spp_savesi = *si;
X	}
X	if (so->so_options & SO_ACCEPTCONN) {
X		struct sppcb *ocb = cb;
X		struct socket *oso = so;
X		so = sonewconn(so);
X		if (so == 0) {
X			goto drop;
X		}
X		/*
X		 * This is ugly, but ....
X		 *
X		 * Mark socket as temporary until we're
X		 * committed to keeping it.  The code at
X		 * ``drop'' and ``dropwithreset'' check the
X		 * flag dropsocket to see if the temporary
X		 * socket created here should be discarded.
X		 * We mark the socket as discardable until
X		 * we're committed to it below in TCPS_LISTEN.
X		 */
X		dropsocket++;
X		nsp = (struct nspcb *)so->so_pcb;
X		nsp->nsp_laddr = si->si_dna;
X		cb = nstosppcb(nsp);
X		cb->s_mtu = ocb->s_mtu;		/* preserve sockopts */
X		cb->s_flags = ocb->s_flags;	/* preserve sockopts */
X		if (so->so_snd.sb_hiwat != oso->so_snd.sb_hiwat) /*XXX*/
X			sbreserve(&so->so_snd, oso->so_snd.sb_hiwat);
X		if (so->so_rcv.sb_hiwat != oso->so_rcv.sb_hiwat) /*XXX*/
X			sbreserve(&so->so_rcv, oso->so_rcv.sb_hiwat);
X		cb->s_state = TCPS_LISTEN;
X	}
X
X	/*
X	 * Packet received on connection.
X	 * reset idle time and keep-alive timer;
X	 */
X	cb->s_idle = 0;
X	cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
X
X	switch (cb->s_state) {
X
X	case TCPS_LISTEN:{
X		struct mbuf *am;
X		register struct sockaddr_ns *sns;
X		struct ns_addr laddr;
X
X		/*
X		 * If somebody here was carying on a conversation
X		 * and went away, and his pen pal thinks he can
X		 * still talk, we get the misdirected packet.
X		 */
X		if (spp_hardnosed && (si->si_did != 0 || si->si_seq != 0)) {
X			spp_istat.gonawy++;
X			goto dropwithreset;
X		}
X		am = m_get(M_DONTWAIT, MT_SONAME);
X		if (am == NULL)
X			goto drop;
X		am->m_len = sizeof (struct sockaddr_ns);
X		sns = mtod(am, struct sockaddr_ns *);
X		sns->sns_family = AF_NS;
X		sns->sns_addr = si->si_sna;
X		laddr = nsp->nsp_laddr;
X		if (ns_nullhost(laddr))
X			nsp->nsp_laddr = si->si_dna;
X		if (ns_pcbconnect(nsp, am)) {
X			nsp->nsp_laddr = laddr;
X			(void) m_free(am);
X			spp_istat.noconn++;
X			goto drop;
X		}
X		(void) m_free(am);
X		spp_template(cb);
X		dropsocket = 0;		/* committed to socket */
X		cb->s_did = si->si_sid;
X		cb->s_rack = si->si_ack;
X		cb->s_ralo = si->si_alo;
X#define THREEWAYSHAKE
X#ifdef THREEWAYSHAKE
X		cb->s_state = TCPS_SYN_RECEIVED;
X		cb->s_force = 1 + SPPT_KEEP;
X		sppstat.spps_accepts++;
X		cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
X		}
X		break;
X	/*
X	 * This state means that we have heard a response
X	 * to our acceptance of their connection
X	 * It is probably logically unnecessary in this
X	 * implementation.
X	 */
X	 case TCPS_SYN_RECEIVED: {
X		if (si->si_did!=cb->s_sid) {
X			spp_istat.wrncon++;
X			goto drop;
X		}
X#endif
X		nsp->nsp_fport =  si->si_sport;
X		cb->s_timer[SPPT_REXMT] = 0;
X		cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
X		soisconnected(so);
X		cb->s_state = TCPS_ESTABLISHED;
X		sppstat.spps_accepts++;
X		}
X		break;
X
X	/*
X	 * This state means that we have gotten a response
X	 * to our attempt to establish a connection.
X	 * We fill in the data from the other side,
X	 * telling us which port to respond to, instead of the well-
X	 * known one we might have sent to in the first place.
X	 * We also require that this is a response to our
X	 * connection id.
X	 */
X	case TCPS_SYN_SENT:
X		if (si->si_did!=cb->s_sid) {
X			spp_istat.notme++;
X			goto drop;
X		}
X		sppstat.spps_connects++;
X		cb->s_did = si->si_sid;
X		cb->s_rack = si->si_ack;
X		cb->s_ralo = si->si_alo;
X		cb->s_dport = nsp->nsp_fport =  si->si_sport;
X		cb->s_timer[SPPT_REXMT] = 0;
X		cb->s_flags |= SF_ACKNOW;
X		soisconnected(so);
X		cb->s_state = TCPS_ESTABLISHED;
X		/* Use roundtrip time of connection request for initial rtt */
X		if (cb->s_rtt) {
X			cb->s_srtt = cb->s_rtt << 3;
X			cb->s_rttvar = cb->s_rtt << 1;
X			SPPT_RANGESET(cb->s_rxtcur,
X			    ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1,
X			    SPPTV_MIN, SPPTV_REXMTMAX);
X			    cb->s_rtt = 0;
X		}
X	}
X	if (so->so_options & SO_DEBUG || traceallspps)
X		spp_trace(SA_INPUT, (u_char)ostate, cb, &spp_savesi, 0);
X
X	m->m_len -= sizeof (struct idp);
X	m->m_off += sizeof (struct idp);
X
X	if (spp_reass(cb, si)) {
X		(void) m_freem(m);
X	}
X	if (cb->s_force || (cb->s_flags & (SF_ACKNOW|SF_WIN|SF_RXT)))
X		(void) spp_output(cb, (struct mbuf *)0);
X	cb->s_flags &= ~(SF_WIN|SF_RXT);
X	return;
X
Xdropwithreset:
X	if (dropsocket)
X		(void) soabort(so);
X	si->si_seq = ntohs(si->si_seq);
X	si->si_ack = ntohs(si->si_ack);
X	si->si_alo = ntohs(si->si_alo);
X	ns_error(dtom(si), NS_ERR_NOSOCK, 0);
X	if (cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || traceallspps)
X		spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0);
X	return;
X
Xdrop:
Xbad:
X	if (cb == 0 || cb->s_nspcb->nsp_socket->so_options & SO_DEBUG ||
X            traceallspps)
X		spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0);
X	m_freem(m);
X}
X
Xint spprexmtthresh = 3;
X
X/*
X * This is structurally similar to the tcp reassembly routine
X * but its function is somewhat different:  It merely queues
X * packets up, and suppresses duplicates.
X */
Xspp_reass(cb, si)
Xregister struct sppcb *cb;
Xregister struct spidp *si;
X{
X	register struct spidp_q *q;
X	register struct mbuf *m;
X	register struct socket *so = cb->s_nspcb->nsp_socket;
X	char packetp = cb->s_flags & SF_HI;
X	int incr;
X	char wakeup = 0;
X
X	if (si == SI(0))
X		goto present;
X	/*
X	 * Update our news from them.
X	 */
X	if (si->si_cc & SP_SA)
X		cb->s_flags |= (spp_use_delack ? SF_DELACK : SF_ACKNOW);
X	if (SSEQ_GT(si->si_alo, cb->s_ralo))
X		cb->s_flags |= SF_WIN;
X	if (SSEQ_LEQ(si->si_ack, cb->s_rack)) {
X		if ((si->si_cc & SP_SP) && cb->s_rack != (cb->s_smax + 1)) {
X			sppstat.spps_rcvdupack++;
X			/*
X			 * If this is a completely duplicate ack
X			 * and other conditions hold, we assume
X			 * a packet has been dropped and retransmit
X			 * it exactly as in tcp_input().
X			 */
X			if (si->si_ack != cb->s_rack ||
X			    si->si_alo != cb->s_ralo)
X				cb->s_dupacks = 0;
X			else if (++cb->s_dupacks == spprexmtthresh) {
X				u_short onxt = cb->s_snxt;
X				int cwnd = cb->s_cwnd;
X
X				cb->s_snxt = si->si_ack;
X				cb->s_cwnd = CUNIT;
X				cb->s_force = 1 + SPPT_REXMT;
X				(void) spp_output(cb, (struct mbuf *)0);
X				cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
X				cb->s_rtt = 0;
X				if (cwnd >= 4 * CUNIT)
X					cb->s_cwnd = cwnd / 2;
X				if (SSEQ_GT(onxt, cb->s_snxt))
X					cb->s_snxt = onxt;
X				return (1);
X			}
X		} else
X			cb->s_dupacks = 0;
X		goto update_window;
X	}
X	cb->s_dupacks = 0;
X	/*
X	 * If our correspondent acknowledges data we haven't sent
X	 * TCP would drop the packet after acking.  We'll be a little
X	 * more permissive
X	 */
X	if (SSEQ_GT(si->si_ack, (cb->s_smax + 1))) {
X		sppstat.spps_rcvacktoomuch++;
X		si->si_ack = cb->s_smax + 1;
X	}
X	sppstat.spps_rcvackpack++;
X	/*
X	 * If transmit timer is running and timed sequence
X	 * number was acked, update smoothed round trip time.
X	 * See discussion of algorithm in tcp_input.c
X	 */
X	if (cb->s_rtt && SSEQ_GT(si->si_ack, cb->s_rtseq)) {
X		sppstat.spps_rttupdated++;
X		if (cb->s_srtt != 0) {
X			register short delta;
X			delta = cb->s_rtt - (cb->s_srtt >> 3);
X			if ((cb->s_srtt += delta) <= 0)
X				cb->s_srtt = 1;
X			if (delta < 0)
X				delta = -delta;
X			delta -= (cb->s_rttvar >> 2);
X			if ((cb->s_rttvar += delta) <= 0)
X				cb->s_rttvar = 1;
X		} else {
X			/*
X			 * No rtt measurement yet
X			 */
X			cb->s_srtt = cb->s_rtt << 3;
X			cb->s_rttvar = cb->s_rtt << 1;
X		}
X		cb->s_rtt = 0;
X		cb->s_rxtshift = 0;
X		SPPT_RANGESET(cb->s_rxtcur,
X			((cb->s_srtt >> 2) + cb->s_rttvar) >> 1,
X			SPPTV_MIN, SPPTV_REXMTMAX);
X	}
X	/*
X	 * If all outstanding data is acked, stop retransmit
X	 * timer and remember to restart (more output or persist).
X	 * If there is more data to be acked, restart retransmit
X	 * timer, using current (possibly backed-off) value;
X	 */
X	if (si->si_ack == cb->s_smax + 1) {
X		cb->s_timer[SPPT_REXMT] = 0;
X		cb->s_flags |= SF_RXT;
X	} else if (cb->s_timer[SPPT_PERSIST] == 0)
X		cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
X	/*
X	 * When new data is acked, open the congestion window.
X	 * If the window gives us less than ssthresh packets
X	 * in flight, open exponentially (maxseg at a time).
X	 * Otherwise open linearly (maxseg^2 / cwnd at a time).
X	 */
X	incr = CUNIT;
X	if (cb->s_cwnd > cb->s_ssthresh)
X		incr = MAX(incr * incr / cb->s_cwnd, 1);
X	cb->s_cwnd = MIN(cb->s_cwnd + incr, cb->s_cwmx);
X	/*
X	 * Trim Acked data from output queue.
X	 */
X	while ((m = so->so_snd.sb_mb) != NULL) {
X		if (SSEQ_LT((mtod(m, struct spidp *))->si_seq, si->si_ack))
X			sbdroprecord(&so->so_snd);
X		else
X			break;
X	}
X	if ((so->so_snd.sb_flags & SB_WAIT) || so->so_snd.sb_sel)
X		 sowwakeup(so);
X	cb->s_rack = si->si_ack;
Xupdate_window:
X	if (SSEQ_LT(cb->s_snxt, cb->s_rack))
X		cb->s_snxt = cb->s_rack;
X	if (SSEQ_LT(cb->s_swl1, si->si_seq) || cb->s_swl1 == si->si_seq &&
X	    (SSEQ_LT(cb->s_swl2, si->si_ack) ||
X	     cb->s_swl2 == si->si_ack && SSEQ_LT(cb->s_ralo, si->si_alo))) {
X		/* keep track of pure window updates */
X		if ((si->si_cc & SP_SP) && cb->s_swl2 == si->si_ack
X		    && SSEQ_LT(cb->s_ralo, si->si_alo)) {
X			sppstat.spps_rcvwinupd++;
X			sppstat.spps_rcvdupack--;
X		}
X		cb->s_ralo = si->si_alo;
X		cb->s_swl1 = si->si_seq;
X		cb->s_swl2 = si->si_ack;
X		cb->s_swnd = (1 + si->si_alo - si->si_ack);
X		if (cb->s_swnd > cb->s_smxw)
X			cb->s_smxw = cb->s_swnd;
X		cb->s_flags |= SF_WIN;
X	}
X	/*
X	 * If this packet number is higher than that which
X	 * we have allocated refuse it, unless urgent
X	 */
X	if (SSEQ_GT(si->si_seq, cb->s_alo)) {
X		if (si->si_cc & SP_SP) {
X			sppstat.spps_rcvwinprobe++;
X			return (1);
X		} else
X			sppstat.spps_rcvpackafterwin++;
X		if (si->si_cc & SP_OB) {
X			if (SSEQ_GT(si->si_seq, cb->s_alo + 60)) {
X				ns_error(dtom(si), NS_ERR_FULLUP, 0);
X				return (0);
X			} /* else queue this packet; */
X		} else {
X			/*register struct socket *so = cb->s_nspcb->nsp_socket;
X			if (so->so_state && SS_NOFDREF) {
X				ns_error(dtom(si), NS_ERR_NOSOCK, 0);
X				(void)spp_close(cb);
X			} else
X				       would crash system*/
X			spp_istat.notyet++;
X			ns_error(dtom(si), NS_ERR_FULLUP, 0);
X			return (0);
X		}
X	}
X	/*
X	 * If this is a system packet, we don't need to
X	 * queue it up, and won't update acknowledge #
X	 */
X	if (si->si_cc & SP_SP) {
X		return (1);
X	}
X	/*
X	 * We have already seen this packet, so drop.
X	 */
X	if (SSEQ_LT(si->si_seq, cb->s_ack)) {
X		spp_istat.bdreas++;
X		sppstat.spps_rcvduppack++;
X		if (si->si_seq == cb->s_ack - 1)
X			spp_istat.lstdup++;
X		return (1);
X	}
X	/*
X	 * Loop through all packets queued up to insert in
X	 * appropriate sequence.
X	 */
X	for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) {
X		if (si->si_seq == SI(q)->si_seq) {
X			sppstat.spps_rcvduppack++;
X			return (1);
X		}
X		if (SSEQ_LT(si->si_seq, SI(q)->si_seq)) {
X			sppstat.spps_rcvoopack++;
X			break;
X		}
X	}
X	insque(si, q->si_prev);
X	/*
X	 * If this packet is urgent, inform process
X	 */
X	if (si->si_cc & SP_OB) {
X		cb->s_iobc = ((char *)si)[1 + sizeof(*si)];
X		sohasoutofband(so);
X		cb->s_oobflags |= SF_IOOB;
X	}
Xpresent:
X#define SPINC sizeof(struct sphdr)
X	/*
X	 * Loop through all packets queued up to update acknowledge
X	 * number, and present all acknowledged data to user;
X	 * If in packet interface mode, show packet headers.
X	 */
X	for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) {
X		  if (SI(q)->si_seq == cb->s_ack) {
X			cb->s_ack++;
X			m = dtom(q);
X			if (SI(q)->si_cc & SP_OB) {
X				cb->s_oobflags &= ~SF_IOOB;
X				if (so->so_rcv.sb_cc)
X					so->so_oobmark = so->so_rcv.sb_cc;
X				else
X					so->so_state |= SS_RCVATMARK;
X			}
X			q = q->si_prev;
X			remque(q->si_next);
X			wakeup = 1;
X			sppstat.spps_rcvpack++;
X			if (packetp) {
X				sbappendrecord(&so->so_rcv, m);
X			} else {
X				cb->s_rhdr = *mtod(m, struct sphdr *);
X				m->m_off += SPINC;
X				m->m_len -= SPINC;
X				sbappend(&so->so_rcv, m);
X			}
X		  } else
X			break;
X	}
X	if (wakeup) sorwakeup(so);
X	return (0);
X}
X
Xspp_ctlinput(cmd, arg)
X	int cmd;
X	caddr_t arg;
X{
X	struct ns_addr *na;
X	extern u_char nsctlerrmap[];
X	extern spp_abort(), spp_quench();
X	extern struct nspcb *idp_drop();
X	struct ns_errp *errp;
X	struct nspcb *nsp;
X	struct sockaddr_ns *sns;
X	int type;
X
X	if (cmd < 0 || cmd > PRC_NCMDS)
X		return;
X	type = NS_ERR_UNREACH_HOST;
X
X	switch (cmd) {
X
X	case PRC_ROUTEDEAD:
X		return;
X
X	case PRC_IFDOWN:
X	case PRC_HOSTDEAD:
X	case PRC_HOSTUNREACH:
X		sns = (struct sockaddr_ns *)arg;
X		if (sns->sns_family != AF_NS)
X			return;
X		na = &sns->sns_addr;
X		break;
X
X	default:
X		errp = (struct ns_errp *)arg;
X		na = &errp->ns_err_idp.idp_dna;
X		type = errp->ns_err_num;
X		type = ntohs((u_short)type);
X	}
X	switch (type) {
X
X	case NS_ERR_UNREACH_HOST:
X		ns_pcbnotify(na, (int)nsctlerrmap[cmd], spp_abort, (long) 0);
X		break;
X
X	case NS_ERR_TOO_BIG:
X	case NS_ERR_NOSOCK:
X		nsp = ns_pcblookup(na, errp->ns_err_idp.idp_sna.x_port,
X			NS_WILDCARD);
X		if (nsp) {
X			if(nsp->nsp_pcb)
X				(void) spp_drop((struct sppcb *)nsp->nsp_pcb,
X						(int)nsctlerrmap[cmd]);
X			else
X				(void) idp_drop(nsp, (int)nsctlerrmap[cmd]);
X		}
X		break;
X
X	case NS_ERR_FULLUP:
X		ns_pcbnotify(na, 0, spp_quench, (long) 0);
X	}
X}
X/*
X * When a source quench is received, close congestion window
X * to one packet.  We will gradually open it again as we proceed.
X */
Xspp_quench(nsp)
X	struct nspcb *nsp;
X{
X	struct sppcb *cb = nstosppcb(nsp);
X
X	if (cb)
X		cb->s_cwnd = CUNIT;
X}
X
X#ifdef notdef
Xint
Xspp_fixmtu(nsp)
Xregister struct nspcb *nsp;
X{
X	register struct sppcb *cb = (struct sppcb *)(nsp->nsp_pcb);
X	register struct mbuf *m;
X	register struct spidp *si;
X	struct ns_errp *ep;
X	struct sockbuf *sb;
X	int badseq, len;
X	struct mbuf *firstbad, *m0;
X
X	if (cb) {
X		/* 
X		 * The notification that we have sent
X		 * too much is bad news -- we will
X		 * have to go through queued up so far
X		 * splitting ones which are too big and
X		 * reassigning sequence numbers and checksums.
X		 * we should then retransmit all packets from
X		 * one above the offending packet to the last one
X		 * we had sent (or our allocation)
X		 * then the offending one so that the any queued
X		 * data at our destination will be discarded.
X		 */
X		 ep = (struct ns_errp *)nsp->nsp_notify_param;
X		 sb = &nsp->nsp_socket->so_snd;
X		 cb->s_mtu = ep->ns_err_param;
X		 badseq = SI(&ep->ns_err_idp)->si_seq;
X		 for (m = sb->sb_mb; m; m = m->m_act) {
X			si = mtod(m, struct spidp *);
X			if (si->si_seq == badseq)
X				break;
X		 }
X		 if (m == 0) return;
X		 firstbad = m;
X		 /*for (;;) {*/
X			/* calculate length */
X			for (m0 = m, len = 0; m ; m = m->m_next)
X				len += m->m_len;
X			if (len > cb->s_mtu) {
X			}
X		/* FINISH THIS
X		} */
X	}
X}
X#endif
X
Xspp_output(cb, m0)
X	register struct sppcb *cb;
X	struct mbuf *m0;
X{
X	struct socket *so = cb->s_nspcb->nsp_socket;
X	register struct mbuf *m;
X	register struct spidp *si = (struct spidp *) 0;
X	register struct sockbuf *sb = &so->so_snd;
X	int len = 0, win, rcv_win;
X	short span, off;
X	u_short alo;
X	int error = 0, idle, sendalot;
X	struct mbuf *mprev;
X	extern int idpcksum;
X
X	if (m0) {
X		int mtu = cb->s_mtu;
X		int datalen;
X		/*
X		 * Make sure that packet isn't too big.
X		 */
X		for (m = m0; m ; m = m->m_next) {
X			mprev = m;
X			len += m->m_len;
X		}
X		datalen = (cb->s_flags & SF_HO) ?
X				len - sizeof (struct sphdr) : len;
X		if (datalen > mtu) {
X			if (cb->s_flags & SF_PI) {
X				m_freem(m0);
X				return (EMSGSIZE);
X			} else {
X				int oldEM = cb->s_cc & SP_EM;
X
X				cb->s_cc &= ~SP_EM;
X				while (len > mtu) {
X					m = m_copy(m0, 0, mtu);
X					if (m == NULL) {
X						error = ENOBUFS;
X						goto bad_copy;
X					}
X					error = spp_output(cb, m);
X					if (error) {
X					bad_copy:
X						cb->s_cc |= oldEM;
X						m_freem(m0);
X						return(error);
X					}
X					m_adj(m0, mtu);
X					len -= mtu;
X				}
X				cb->s_cc |= oldEM;
X			}
X		}
X		/*
X		 * Force length even, by adding a "garbage byte" if
X		 * necessary.
X		 */
X		if (len & 1) {
X			m = mprev;
X			if (m->m_len + m->m_off < MMAXOFF)
X				m->m_len++;
X			else {
X				struct mbuf *m1 = m_get(M_DONTWAIT, MT_DATA);
X
X				if (m1 == 0) {
X					m_freem(m0);
X					return (ENOBUFS);
X				}
X				m1->m_len = 1;
X				m1->m_off = MMAXOFF - 1;
X				m->m_next = m1;
X			}
X		}
X		m = m_get(M_DONTWAIT, MT_HEADER);
X		if (m == 0) {
X			m_freem(m0);
X			return (ENOBUFS);
X		}
X		/*
X		 * Fill in mbuf with extended SP header
X		 * and addresses and length put into network format.
X		 * Long align so prepended ip headers will work on Gould.
X		 */
X		m->m_off = MMAXOFF - sizeof (struct spidp) - 2;
X		m->m_len = sizeof (struct spidp);
X		m->m_next = m0;
X		si = mtod(m, struct spidp *);
X		si->si_i = *cb->s_idp;
X		si->si_s = cb->s_shdr;
X		if ((cb->s_flags & SF_PI) && (cb->s_flags & SF_HO)) {
X			register struct sphdr *sh;
X			if (m0->m_len < sizeof (*sh)) {
X				if((m0 = m_pullup(m0, sizeof(*sh))) == NULL) {
X					(void) m_free(m);
X					m_freem(m0);
X					return (EINVAL);
X				}
X				m->m_next = m0;
X			}
X			sh = mtod(m0, struct sphdr *);
X			si->si_dt = sh->sp_dt;
X			si->si_cc |= sh->sp_cc & SP_EM;
X			m0->m_len -= sizeof (*sh);
X			m0->m_off += sizeof (*sh);
X			len -= sizeof (*sh);
X		}
X		len += sizeof(*si);
X		if (cb->s_oobflags & SF_SOOB) {
X			/*
X			 * Per jqj at cornell:
X			 * make sure OB packets convey exactly 1 byte.
X			 * If the packet is 1 byte or larger, we
X			 * have already guaranted there to be at least
X			 * one garbage byte for the checksum, and
X			 * extra bytes shouldn't hurt!
X			 */
X			if (len > sizeof(*si)) {
X				si->si_cc |= SP_OB;
X				len = (1 + sizeof(*si));
X			}
X		}
X		si->si_len = htons((u_short)len);
X		/*
X		 * queue stuff up for output
X		 */
X		sbappendrecord(sb, m);
X		cb->s_seq++;
X	}
X	idle = (cb->s_smax == (cb->s_rack - 1));
Xagain:
X	sendalot = 0;
X	off = cb->s_snxt - cb->s_rack;
X	win = MIN(cb->s_swnd, (cb->s_cwnd/CUNIT));
X
X	/*
X	 * If in persist timeout with window of 0, send a probe.
X	 * Otherwise, if window is small but nonzero
X	 * and timer expired, send what we can and go into
X	 * transmit state.
X	 */
X	if (cb->s_force == 1 + SPPT_PERSIST) {
X		if (win != 0) {
X			cb->s_timer[SPPT_PERSIST] = 0;
X			cb->s_rxtshift = 0;
X		}
X	}
X	span = cb->s_seq - cb->s_rack;
X	len = MIN(span, win) - off;
X
X	if (len < 0) {
X		/*
X		 * Window shrank after we went into it.
X		 * If window shrank to 0, cancel pending
X		 * restransmission and pull s_snxt back
X		 * to (closed) window.  We will enter persist
X		 * state below.  If the widndow didn't close completely,
X		 * just wait for an ACK.
X		 */
X		len = 0;
X		if (win == 0) {
X			cb->s_timer[SPPT_REXMT] = 0;
X			cb->s_snxt = cb->s_rack;
X		}
X	}
X	if (len > 1)
X		sendalot = 1;
X	rcv_win = sbspace(&so->so_rcv);
X
X	/*
X	 * Send if we owe peer an ACK.
X	 */
X	if (cb->s_oobflags & SF_SOOB) {
X		/*
X		 * must transmit this out of band packet
X		 */
X		cb->s_oobflags &= ~ SF_SOOB;
X		sendalot = 1;
X		sppstat.spps_sndurg++;
X		goto found;
X	}
X	if (cb->s_flags & SF_ACKNOW)
X		goto send;
X	if (cb->s_state < TCPS_ESTABLISHED)
X		goto send;
X	/*
X	 * Silly window can't happen in spp.
X	 * Code from tcp deleted.
X	 */
X	if (len)
X		goto send;
X	/*
X	 * Compare available window to amount of window
X	 * known to peer (as advertised window less
X	 * next expected input.)  If the difference is at least two
X	 * packets or at least 35% of the mximum possible window,
X	 * then want to send a window update to peer.
X	 */
X	if (rcv_win > 0) {
X		u_short delta =  1 + cb->s_alo - cb->s_ack;
X		int adv = rcv_win - (delta * cb->s_mtu);
X		
X		if ((so->so_rcv.sb_cc == 0 && adv >= (2 * cb->s_mtu)) ||
X		    (100 * adv / so->so_rcv.sb_hiwat >= 35)) {
X			sppstat.spps_sndwinup++;
X			cb->s_flags |= SF_ACKNOW;
X			goto send;
X		}
X
X	}
X	/*
X	 * Many comments from tcp_output.c are appropriate here
X	 * including . . .
X	 * If send window is too small, there is data to transmit, and no
X	 * retransmit or persist is pending, then go to persist state.
X	 * If nothing happens soon, send when timer expires:
X	 * if window is nonzero, transmit what we can,
X	 * otherwise send a probe.
X	 */
X	if (so->so_snd.sb_cc && cb->s_timer[SPPT_REXMT] == 0 &&
X		cb->s_timer[SPPT_PERSIST] == 0) {
X			cb->s_rxtshift = 0;
X			spp_setpersist(cb);
X	}
X	/*
X	 * No reason to send a packet, just return.
X	 */
X	cb->s_outx = 1;
X	return (0);
X
Xsend:
X	/*
X	 * Find requested packet.
X	 */
X	si = 0;
X	if (len > 0) {
X		cb->s_want = cb->s_snxt;
X		for (m = sb->sb_mb; m; m = m->m_act) {
X			si = mtod(m, struct spidp *);
X			if (SSEQ_LEQ(cb->s_snxt, si->si_seq))
X				break;
X		}
X	found:
X		if (si) {
X			if (si->si_seq == cb->s_snxt)
X					cb->s_snxt++;
X				else
X					sppstat.spps_sndvoid++, si = 0;
X		}
X	}
X	/*
X	 * update window
X	 */
X	if (rcv_win < 0)
X		rcv_win = 0;
X	alo = cb->s_ack - 1 + (rcv_win / ((short)cb->s_mtu));
X	if (SSEQ_LT(alo, cb->s_alo)) 
X		alo = cb->s_alo;
X
X	if (si) {
X		/*
X		 * must make a copy of this packet for
X		 * idp_output to monkey with
X		 */
X		m = m_copy(dtom(si), 0, (int)M_COPYALL);
X		if (m == NULL) {
X			return (ENOBUFS);
X		}
X		m0 = m;
X		si = mtod(m, struct spidp *);
X		if (SSEQ_LT(si->si_seq, cb->s_smax))
X			sppstat.spps_sndrexmitpack++;
X		else
X			sppstat.spps_sndpack++;
X	} else if (cb->s_force || cb->s_flags & SF_ACKNOW) {
X		/*
X		 * Must send an acknowledgement or a probe
X		 */
X		if (cb->s_force)
X			sppstat.spps_sndprobe++;
X		if (cb->s_flags & SF_ACKNOW)
X			sppstat.spps_sndacks++;
X		m = m_get(M_DONTWAIT, MT_HEADER);
X		if (m == 0) {
X			return (ENOBUFS);
X		}
X		/*
X		 * Fill in mbuf with extended SP header
X		 * and addresses and length put into network format.
X		 * Allign beginning of packet to long to prepend
X		 * ifp's on loopback, or NSIP encaspulation for fussy cpu's.
X		 */
X		m->m_off = MMAXOFF - sizeof (struct spidp) - 2;
X		m->m_len = sizeof (*si);
X		m->m_next = 0;
X		si = mtod(m, struct spidp *);
X		si->si_i = *cb->s_idp;
X		si->si_s = cb->s_shdr;
X		si->si_seq = cb->s_smax + 1;
X		si->si_len = htons(sizeof (*si));
X		si->si_cc |= SP_SP;
X	} else {
X		cb->s_outx = 3;
X		if (so->so_options & SO_DEBUG || traceallspps)
X			spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
X		return (0);
X	}
X	/*
X	 * Stuff checksum and output datagram.
X	 */
X	if ((si->si_cc & SP_SP) == 0) {
X		if (cb->s_force != (1 + SPPT_PERSIST) ||
X		    cb->s_timer[SPPT_PERSIST] == 0) {
X			/*
X			 * If this is a new packet and we are not currently 
X			 * timing anything, time this one.
X			 */
X			if (SSEQ_LT(cb->s_smax, si->si_seq)) {
X				cb->s_smax = si->si_seq;
X				if (cb->s_rtt == 0) {
X					sppstat.spps_segstimed++;
X					cb->s_rtseq = si->si_seq;
X					cb->s_rtt = 1;
X				}
X			}
X			/*
X			 * Set rexmt timer if not currently set,
X			 * Initial value for retransmit timer is smoothed
X			 * round-trip time + 2 * round-trip time variance.
X			 * Initialize shift counter which is used for backoff
X			 * of retransmit time.
X			 */
X			if (cb->s_timer[SPPT_REXMT] == 0 &&
X			    cb->s_snxt != cb->s_rack) {
X				cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
X				if (cb->s_timer[SPPT_PERSIST]) {
X					cb->s_timer[SPPT_PERSIST] = 0;
X					cb->s_rxtshift = 0;
X				}
X			}
X		} else if (SSEQ_LT(cb->s_smax, si->si_seq)) {
X			cb->s_smax = si->si_seq;
X		}
X	} else if (cb->s_state < TCPS_ESTABLISHED) {
X		if (cb->s_rtt == 0)
X			cb->s_rtt = 1; /* Time initial handshake */
X		if (cb->s_timer[SPPT_REXMT] == 0)
X			cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
X	}
X	{
X		/*
X		 * Do not request acks when we ack their data packets or
X		 * when we do a gratuitous window update.
X		 */
X		if (((si->si_cc & SP_SP) == 0) || cb->s_force)
X				si->si_cc |= SP_SA;
X		si->si_seq = htons(si->si_seq);
X		si->si_alo = htons(alo);
X		si->si_ack = htons(cb->s_ack);
X
X		if (idpcksum) {
X			si->si_sum = 0;
X			len = ntohs(si->si_len);
X			if (len & 1)
X				len++;
X			si->si_sum = ns_cksum(dtom(si), len);
X		} else
X			si->si_sum = 0xffff;
X
X		cb->s_outx = 4;
X		if (so->so_options & SO_DEBUG || traceallspps)
X			spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
X
X		if (so->so_options & SO_DONTROUTE)
X			error = ns_output(m, (struct route *)0, NS_ROUTETOIF);
X		else
X			error = ns_output(m, &cb->s_nspcb->nsp_route, 0);
X	}
X	if (error) {
X		return (error);
X	}
X	sppstat.spps_sndtotal++;
X	/*
X	 * Data sent (as far as we can tell).
X	 * If this advertises a larger window than any other segment,
X	 * then remember the size of the advertized window.
X	 * Any pending ACK has now been sent.
X	 */
X	cb->s_force = 0;
X	cb->s_flags &= ~(SF_ACKNOW|SF_DELACK);
X	if (SSEQ_GT(alo, cb->s_alo))
X		cb->s_alo = alo;
X	if (sendalot)
X		goto again;
X	cb->s_outx = 5;
X	return (0);
X}
X
Xint spp_do_persist_panics = 0;
X
Xspp_setpersist(cb)
X	register struct sppcb *cb;
X{
X	register t = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
X	extern int spp_backoff[];
X
X	if (cb->s_timer[SPPT_REXMT] && spp_do_persist_panics)
X		panic("spp_output REXMT");
X	/*
X	 * Start/restart persistance timer.
X	 */
X	SPPT_RANGESET(cb->s_timer[SPPT_PERSIST],
X	    t*spp_backoff[cb->s_rxtshift],
X	    SPPTV_PERSMIN, SPPTV_PERSMAX);
X	if (cb->s_rxtshift < SPP_MAXRXTSHIFT)
X		cb->s_rxtshift++;
X}
X/*ARGSUSED*/
Xspp_ctloutput(req, so, level, name, value)
X	int req;
X	struct socket *so;
X	int name;
X	struct mbuf **value;
X{
X	register struct mbuf *m;
X	struct nspcb *nsp = sotonspcb(so);
X	register struct sppcb *cb;
X	int mask, error = 0;
X
X	if (level != NSPROTO_SPP) {
X		/* This will have to be changed when we do more general
X		   stacking of protocols */
X		return (idp_ctloutput(req, so, level, name, value));
X	}
X	if (nsp == NULL) {
X		error = EINVAL;
X		goto release;
X	} else
X		cb = nstosppcb(nsp);
X
X	switch (req) {
X
X	case PRCO_GETOPT:
X		if (value == NULL)
X			return (EINVAL);
X		m = m_get(M_DONTWAIT, MT_DATA);
X		if (m == NULL)
X			return (ENOBUFS);
X		switch (name) {
X
X		case SO_HEADERS_ON_INPUT:
X			mask = SF_HI;
X			goto get_flags;
X
X		case SO_HEADERS_ON_OUTPUT:
X			mask = SF_HO;
X		get_flags:
X			m->m_len = sizeof(short);
X			m->m_off = MMAXOFF - sizeof(short);
X			*mtod(m, short *) = cb->s_flags & mask;
X			break;
X
X		case SO_MTU:
X			m->m_len = sizeof(u_short);
X			m->m_off = MMAXOFF - sizeof(short);
X			*mtod(m, short *) = cb->s_mtu;
X			break;
X
X		case SO_LAST_HEADER:
X			m->m_len = sizeof(struct sphdr);
X			m->m_off = MMAXOFF - sizeof(struct sphdr);
X			*mtod(m, struct sphdr *) = cb->s_rhdr;
X			break;
X
X		case SO_DEFAULT_HEADERS:
X			m->m_len = sizeof(struct spidp);
X			m->m_off = MMAXOFF - sizeof(struct sphdr);
X			*mtod(m, struct sphdr *) = cb->s_shdr;
X			break;
X
X		default:
X			error = EINVAL;
X		}
X		*value = m;
X		break;
X
X	case PRCO_SETOPT:
X		if (value == 0 || *value == 0) {
X			error = EINVAL;
X			break;
X		}
X		switch (name) {
X			int *ok;
X
X		case SO_HEADERS_ON_INPUT:
X			mask = SF_HI;
X			goto set_head;
X
X		case SO_HEADERS_ON_OUTPUT:
X			mask = SF_HO;
X		set_head:
X			if (cb->s_flags & SF_PI) {
X				ok = mtod(*value, int *);
X				if (*ok)
X					cb->s_flags |= mask;
X				else
X					cb->s_flags &= ~mask;
X			} else error = EINVAL;
X			break;
X
X		case SO_MTU:
X			cb->s_mtu = *(mtod(*value, u_short *));
X			break;
X
X		case SO_DEFAULT_HEADERS:
X			{
X				register struct sphdr *sp
X						= mtod(*value, struct sphdr *);
X				cb->s_dt = sp->sp_dt;
X				cb->s_cc = sp->sp_cc & SP_EM;
X			}
X			break;
X
X		default:
X			error = EINVAL;
X		}
X		m_freem(*value);
X		break;
X	}
X	release:
X		return (error);
X}
X
X/*ARGSUSED*/
Xspp_usrreq(so, req, m, nam, rights)
X	struct socket *so;
X	int req;
X	struct mbuf *m, *nam, *rights;
X{
X	struct nspcb *nsp = sotonspcb(so);
X	register struct sppcb *cb;
X	int s = splnet();
X	int error = 0, ostate;
X	struct mbuf *mm;
X	register struct sockbuf *sb;
X
X	if (req == PRU_CONTROL)
X                return (ns_control(so, (int)m, (caddr_t)nam,
X			(struct ifnet *)rights));
X	if (rights && rights->m_len) {
X		error = EINVAL;
X		goto release;
X	}
X	if (nsp == NULL) {
X		if (req != PRU_ATTACH) {
X			error = EINVAL;
X			goto release;
X		}
X	} else
X		cb = nstosppcb(nsp);
X
X	ostate = cb ? cb->s_state : 0;
X
X	switch (req) {
X
X	case PRU_ATTACH:
X		if (nsp != NULL) {
X			error = EISCONN;
X			break;
X		}
X		error = ns_pcballoc(so, &nspcb);
X		if (error)
X			break;
X		error = soreserve(so, 3072, 3072);
X		if (error)
X			break;
X		nsp = sotonspcb(so);
X
X		mm = m_getclr(M_DONTWAIT, MT_PCB);
X		sb = &so->so_snd;
X
X		if (mm == NULL) {
X			error = ENOBUFS;
X			break;
X		}
X		cb = mtod(mm, struct sppcb *);
X		mm = m_getclr(M_DONTWAIT, MT_HEADER);
X		if (mm == NULL) {
X			m_free(dtom(m));
X			error = ENOBUFS;
X			break;
X		}
X		cb->s_idp = mtod(mm, struct idp *);
X		cb->s_state = TCPS_LISTEN;
X		cb->s_smax = -1;
X		cb->s_swl1 = -1;
X		cb->s_q.si_next = cb->s_q.si_prev = &cb->s_q;
X		cb->s_nspcb = nsp;
X		cb->s_mtu = 576 - sizeof (struct spidp);
X		cb->s_cwnd = sbspace(sb) * CUNIT / cb->s_mtu;
X		cb->s_ssthresh = cb->s_cwnd;
X		cb->s_cwmx = sb->sb_mbmax * CUNIT /
X				(2 * sizeof (struct spidp));
X		/* Above is recomputed when connecting to account
X		   for changed buffering or mtu's */
X		cb->s_rtt = SPPTV_SRTTBASE;
X		cb->s_rttvar = SPPTV_SRTTDFLT << 2;
X		SPPT_RANGESET(cb->s_rxtcur,
X		    ((SPPTV_SRTTBASE >> 2) + (SPPTV_SRTTDFLT << 2)) >> 1,
X		    SPPTV_MIN, SPPTV_REXMTMAX);
X		nsp->nsp_pcb = (caddr_t) cb; 
X		break;
X
X	case PRU_DETACH:
X		if (nsp == NULL) {
X			error = ENOTCONN;
X			break;
X		}
X		if (cb->s_state > TCPS_LISTEN)
X			cb = spp_disconnect(cb);
X		else
X			cb = spp_close(cb);
X		break;
X
X	case PRU_BIND:
X		error = ns_pcbbind(nsp, nam);
X		break;
X
X	case PRU_LISTEN:
X		if (nsp->nsp_lport == 0)
X			error = ns_pcbbind(nsp, (struct mbuf *)0);
X		if (error == 0)
X			cb->s_state = TCPS_LISTEN;
X		break;
X
X	/*
X	 * Initiate connection to peer.
X	 * Enter SYN_SENT state, and mark socket as connecting.
X	 * Start keep-alive timer, setup prototype header,
X	 * Send initial system packet requesting connection.
X	 */
X	case PRU_CONNECT:
X		if (nsp->nsp_lport == 0) {
X			error = ns_pcbbind(nsp, (struct mbuf *)0);
X			if (error)
X				break;
X		}
X		error = ns_pcbconnect(nsp, nam);
X		if (error)
X			break;
X		soisconnecting(so);
X		sppstat.spps_connattempt++;
X		cb->s_state = TCPS_SYN_SENT;
X		cb->s_did = 0;
X		spp_template(cb);
X		cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
X		cb->s_force = 1 + SPPTV_KEEP;
X		/*
X		 * Other party is required to respond to
X		 * the port I send from, but he is not
X		 * required to answer from where I am sending to,
X		 * so allow wildcarding.
X		 * original port I am sending to is still saved in
X		 * cb->s_dport.
X		 */
X		nsp->nsp_fport = 0;
X		error = spp_output(cb, (struct mbuf *) 0);
X		break;
X
X	case PRU_CONNECT2:
X		error = EOPNOTSUPP;
X		break;
X
X	/*
X	 * We may decide later to implement connection closing
X	 * handshaking at the spp level optionally.
X	 * here is the hook to do it:
X	 */
X	case PRU_DISCONNECT:
X		cb = spp_disconnect(cb);
X		break;
X
X	/*
X	 * Accept a connection.  Essentially all the work is
X	 * done at higher levels; just return the address
X	 * of the peer, storing through addr.
X	 */
X	case PRU_ACCEPT: {
X		struct sockaddr_ns *sns = mtod(nam, struct sockaddr_ns *);
X
X		nam->m_len = sizeof (struct sockaddr_ns);
X		sns->sns_family = AF_NS;
X		sns->sns_addr = nsp->nsp_faddr;
X		break;
X		}
X
X	case PRU_SHUTDOWN:
X		socantsendmore(so);
X		cb = spp_usrclosed(cb);
X		if (cb)
X			error = spp_output(cb, (struct mbuf *) 0);
X		break;
X
X	/*
X	 * After a receive, possibly send acknowledgment
X	 * updating allocation.
X	 */
X	case PRU_RCVD:
X		cb->s_flags |= SF_RVD;
X		(void) spp_output(cb, (struct mbuf *) 0);
X		cb->s_flags &= ~SF_RVD;
X		break;
X
X	case PRU_ABORT:
X		(void) spp_drop(cb, ECONNABORTED);
X		break;
X
X	case PRU_SENSE:
X	case PRU_CONTROL:
X		m = NULL;
X		error = EOPNOTSUPP;
X		break;
X
X	case PRU_RCVOOB:
X		if ((cb->s_oobflags & SF_IOOB) || so->so_oobmark ||
X		    (so->so_state & SS_RCVATMARK)) {
X			m->m_len = 1;
X			*mtod(m, caddr_t) = cb->s_iobc;
X			break;
X		}
X		error = EINVAL;
X		break;
X
X	case PRU_SENDOOB:
X		if (sbspace(&so->so_snd) < -512) {
X			error = ENOBUFS;
X			break;
X		}
X		cb->s_oobflags |= SF_SOOB;
X		/* fall into */
X	case PRU_SEND:
X		error = spp_output(cb, m);
X		m = NULL;
X		break;
X
X	case PRU_SOCKADDR:
X		ns_setsockaddr(nsp, nam);
X		break;
X
X	case PRU_PEERADDR:
X		ns_setpeeraddr(nsp, nam);
X		break;
X
X	case PRU_SLOWTIMO:
X		cb = spp_timers(cb, (int)nam);
X		req |= ((int)nam) << 8;
X		break;
X
X	case PRU_FASTTIMO:
X	case PRU_PROTORCV:
X	case PRU_PROTOSEND:
X		error =  EOPNOTSUPP;
X		break;
X
X	default:
X		panic("sp_usrreq");
X	}
X	if (cb && (so->so_options & SO_DEBUG || traceallspps))
X		spp_trace(SA_USER, (u_char)ostate, cb, (struct spidp *)0, req);
Xrelease:
X	if (m != NULL)
X		m_freem(m);
X	splx(s);
X	return (error);
X}
X
Xspp_usrreq_sp(so, req, m, nam, rights)
X	struct socket *so;
X	int req;
X	struct mbuf *m, *nam, *rights;
X{
X	int error = spp_usrreq(so, req, m, nam, rights);
X
X	if (req == PRU_ATTACH && error == 0) {
X		struct nspcb *nsp = sotonspcb(so);
X		((struct sppcb *)nsp->nsp_pcb)->s_flags |=
X					(SF_HI | SF_HO | SF_PI);
X	}
X	return (error);
X}
X
X/*
X * Create template to be used to send spp packets on a connection.
X * Called after host entry created, fills
X * in a skeletal spp header (choosing connection id),
X * minimizing the amount of work necessary when the connection is used.
X */
Xspp_template(cb)
X	register struct sppcb *cb;
X{
X	register struct nspcb *nsp = cb->s_nspcb;
X	register struct idp *idp = cb->s_idp;
X	register struct sockbuf *sb = &(nsp->nsp_socket->so_snd);
X
X	idp->idp_pt = NSPROTO_SPP;
X	idp->idp_sna = nsp->nsp_laddr;
X	idp->idp_dna = nsp->nsp_faddr;
X	cb->s_sid = htons(spp_iss);
X	spp_iss += SPP_ISSINCR/2;
X	cb->s_alo = 1;
X	cb->s_cwnd = (sbspace(sb) * CUNIT) / cb->s_mtu;
X	cb->s_ssthresh = cb->s_cwnd; /* Try to expand fast to full complement
X					of large packets */
X	cb->s_cwmx = (sb->sb_mbmax * CUNIT) / (2 * sizeof(struct spidp));
X	cb->s_cwmx = MAX(cb->s_cwmx, cb->s_cwnd);
X		/* But allow for lots of little packets as well */
X}
X
X/*
X * Close a SPIP control block:
X *	discard spp control block itself
X *	discard ns protocol control block
X *	wake up any sleepers
X */
Xstruct sppcb *
Xspp_close(cb)
X	register struct sppcb *cb;
X{
X	register struct spidp_q *s;
X	struct nspcb *nsp = cb->s_nspcb;
X	struct socket *so = nsp->nsp_socket;
X	register struct mbuf *m;
X
X	s = cb->s_q.si_next;
X	while (s != &(cb->s_q)) {
X		s = s->si_next;
X		m = dtom(s->si_prev);
X		remque(s->si_prev);
X		m_freem(m);
X	}
X	(void) m_free(dtom(cb->s_idp));
X	(void) m_free(dtom(cb));
X	nsp->nsp_pcb = 0;
X	soisdisconnected(so);
X	ns_pcbdetach(nsp);
X	sppstat.spps_closed++;
X	return ((struct sppcb *)0);
X}
X/*
X *	Someday we may do level 3 handshaking
X *	to close a connection or send a xerox style error.
X *	For now, just close.
X */
Xstruct sppcb *
Xspp_usrclosed(cb)
X	register struct sppcb *cb;
X{
X	return (spp_close(cb));
X}
Xstruct sppcb *
Xspp_disconnect(cb)
X	register struct sppcb *cb;
X{
X	return (spp_close(cb));
X}
X/*
X * Drop connection, reporting
X * the specified error.
X */
Xstruct sppcb *
Xspp_drop(cb, errno)
X	register struct sppcb *cb;
X	int errno;
X{
X	struct socket *so = cb->s_nspcb->nsp_socket;
X
X	/*
X	 * someday, in the xerox world
X	 * we will generate error protocol packets
X	 * announcing that the socket has gone away.
X	 */
X	if (TCPS_HAVERCVDSYN(cb->s_state)) {
X		sppstat.spps_drops++;
X		cb->s_state = TCPS_CLOSED;
X		/*(void) tcp_output(cb);*/
X	} else
X		sppstat.spps_conndrops++;
X	so->so_error = errno;
X	return (spp_close(cb));
X}
X
Xspp_abort(nsp)
X	struct nspcb *nsp;
X{
X
X	(void) spp_close((struct sppcb *)nsp->nsp_pcb);
X}
X
Xint	spp_backoff[SPP_MAXRXTSHIFT+1] =
X    { 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 };
X/*
X * Fast timeout routine for processing delayed acks
X */
Xspp_fasttimo()
X{
X	register struct nspcb *nsp;
X	register struct sppcb *cb;
X	int s = splnet();
X
X	nsp = nspcb.nsp_next;
X	if (nsp)
X	for (; nsp != &nspcb; nsp = nsp->nsp_next)
X		if ((cb = (struct sppcb *)nsp->nsp_pcb) &&
X		    (cb->s_flags & SF_DELACK)) {
X			cb->s_flags &= ~SF_DELACK;
X			cb->s_flags |= SF_ACKNOW;
X			sppstat.spps_delack++;
X			(void) spp_output(cb, (struct mbuf *) 0);
X		}
X	splx(s);
X}
X
X/*
X * spp protocol timeout routine called every 500 ms.
X * Updates the timers in all active pcb's and
X * causes finite state machine actions if timers expire.
X */
Xspp_slowtimo()
X{
X	register struct nspcb *ip, *ipnxt;
X	register struct sppcb *cb;
X	int s = splnet();
X	register int i;
X
X	/*
X	 * Search through tcb's and update active timers.
X	 */
X	ip = nspcb.nsp_next;
X	if (ip == 0) {
X		splx(s);
X		return;
X	}
X	while (ip != &nspcb) {
X		cb = nstosppcb(ip);
X		ipnxt = ip->nsp_next;
X		if (cb == 0)
X			goto tpgone;
X		for (i = 0; i < SPPT_NTIMERS; i++) {
X			if (cb->s_timer[i] && --cb->s_timer[i] == 0) {
X				(void) spp_usrreq(cb->s_nspcb->nsp_socket,
X				    PRU_SLOWTIMO, (struct mbuf *)0,
X				    (struct mbuf *)i, (struct mbuf *)0);
X				if (ipnxt->nsp_prev != ip)
X					goto tpgone;
X			}
X		}
X		cb->s_idle++;
X		if (cb->s_rtt)
X			cb->s_rtt++;
Xtpgone:
X		ip = ipnxt;
X	}
X	spp_iss += SPP_ISSINCR/PR_SLOWHZ;		/* increment iss */
X	splx(s);
X}
X/*
X * SPP timer processing.
X */
Xstruct sppcb *
Xspp_timers(cb, timer)
X	register struct sppcb *cb;
X	int timer;
X{
X	long rexmt;
X	int win;
X
X	cb->s_force = 1 + timer;
X	switch (timer) {
X
X	/*
X	 * 2 MSL timeout in shutdown went off.  TCP deletes connection
X	 * control block.
X	 */
X	case SPPT_2MSL:
X		printf("spp: SPPT_2MSL went off for no reason\n");
X		cb->s_timer[timer] = 0;
X		break;
X
X	/*
X	 * Retransmission timer went off.  Message has not
X	 * been acked within retransmit interval.  Back off
X	 * to a longer retransmit interval and retransmit one packet.
X	 */
X	case SPPT_REXMT:
X		if (++cb->s_rxtshift > SPP_MAXRXTSHIFT) {
X			cb->s_rxtshift = SPP_MAXRXTSHIFT;
X			sppstat.spps_timeoutdrop++;
X			cb = spp_drop(cb, ETIMEDOUT);
X			break;
X		}
X		sppstat.spps_rexmttimeo++;
X		rexmt = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
X		rexmt *= spp_backoff[cb->s_rxtshift];
X		SPPT_RANGESET(cb->s_rxtcur, rexmt, SPPTV_MIN, SPPTV_REXMTMAX);
X		cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
X		/*
X		 * If we have backed off fairly far, our srtt
X		 * estimate is probably bogus.  Clobber it
X		 * so we'll take the next rtt measurement as our srtt;
X		 * move the current srtt into rttvar to keep the current
X		 * retransmit times until then.
X		 */
X		if (cb->s_rxtshift > SPP_MAXRXTSHIFT / 4 ) {
X			cb->s_rttvar += (cb->s_srtt >> 2);
X			cb->s_srtt = 0;
X		}
X		cb->s_snxt = cb->s_rack;
X		/*
X		 * If timing a packet, stop the timer.
X		 */
X		cb->s_rtt = 0;
X		/*
X		 * See very long discussion in tcp_timer.c about congestion
X		 * window and sstrhesh
X		 */
X		win = MIN(cb->s_swnd, (cb->s_cwnd/CUNIT)) / 2;
X		if (win < 2)
X			win = 2;
X		cb->s_cwnd = CUNIT;
X		cb->s_ssthresh = win * CUNIT;
X		(void) spp_output(cb, (struct mbuf *) 0);
X		break;
X
X	/*
X	 * Persistance timer into zero window.
X	 * Force a probe to be sent.
X	 */
X	case SPPT_PERSIST:
X		sppstat.spps_persisttimeo++;
X		spp_setpersist(cb);
X		(void) spp_output(cb, (struct mbuf *) 0);
X		break;
X
X	/*
X	 * Keep-alive timer went off; send something
X	 * or drop connection if idle for too long.
X	 */
X	case SPPT_KEEP:
X		sppstat.spps_keeptimeo++;
X		if (cb->s_state < TCPS_ESTABLISHED)
X			goto dropit;
X		if (cb->s_nspcb->nsp_socket->so_options & SO_KEEPALIVE) {
X		    	if (cb->s_idle >= SPPTV_MAXIDLE)
X				goto dropit;
X			sppstat.spps_keepprobe++;
X			(void) spp_output(cb, (struct mbuf *) 0);
X		} else
X			cb->s_idle = 0;
X		cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
X		break;
X	dropit:
X		sppstat.spps_keepdrops++;
X		cb = spp_drop(cb, ETIMEDOUT);
X		break;
X	}
X	return (cb);
X}
X#ifndef lint
Xint SppcbSize = sizeof (struct sppcb);
Xint NspcbSize = sizeof (struct nspcb);
X#endif lint
END-of-netns/spp_usrreq.c
echo x - netns/spp_var.h
sed 's/^X//' >netns/spp_var.h << 'END-of-netns/spp_var.h'
X/*
X * Copyright (c) 1984, 1985, 1986, 1987 Regents of the University of California.
X * All rights reserved.
X *
X * Redistribution and use in source and binary forms are permitted
X * provided that this notice is preserved and that due credit is given
X * to the University of California at Berkeley. The name of the University
X * may not be used to endorse or promote products derived from this
X * software without specific prior written permission. This software
X * is provided ``as is'' without express or implied warranty.
X *
X *      @(#)spp_var.h	7.4 (Berkeley) 3/12/88
X */
X
X/*
X * Sp control block, one per connection
X */
Xstruct sppcb {
X	struct	spidp_q	s_q;		/* queue for out-of-order receipt */
X	struct	nspcb	*s_nspcb;	/* backpointer to internet pcb */
X	u_char	s_state;
X	u_char	s_flags;
X#define	SF_ACKNOW	0x01		/* Ack peer immediately */
X#define	SF_DELACK	0x02		/* Ack, but try to delay it */
X#define	SF_HI	0x04			/* Show headers on input */
X#define	SF_HO	0x08			/* Show headers on output */
X#define	SF_PI	0x10			/* Packet (datagram) interface */
X#define SF_WIN	0x20			/* Window info changed */
X#define SF_RXT	0x40			/* Rxt info changed */
X#define SF_RVD	0x80			/* Calling from read usrreq routine */
X	u_short s_mtu;			/* Max packet size for this stream */
X/* use sequence fields in headers to store sequence numbers for this
X   connection */
X	struct	idp	*s_idp;
X	struct	sphdr	s_shdr;		/* prototype header to transmit */
X#define s_cc s_shdr.sp_cc		/* connection control (for EM bit) */
X#define s_dt s_shdr.sp_dt		/* datastream type */
X#define s_sid s_shdr.sp_sid		/* source connection identifier */
X#define s_did s_shdr.sp_did		/* destination connection identifier */
X#define s_seq s_shdr.sp_seq		/* sequence number */
X#define s_ack s_shdr.sp_ack		/* acknowledge number */
X#define s_alo s_shdr.sp_alo		/* allocation number */
X#define s_dport s_idp->idp_dna.x_port	/* where we are sending */
X	struct sphdr s_rhdr;		/* last received header (in effect!)*/
X	u_short s_rack;			/* their acknowledge number */
X	u_short s_ralo;			/* their allocation number */
X	u_short s_smax;			/* highest packet # we have sent */
X	u_short	s_snxt;			/* which packet to send next */
X
X/* congestion control */
X#define	CUNIT	1024			/* scaling for ... */
X	int	s_cwnd;			/* Congestion-controlled window */
X					/* in packets * CUNIT */
X	short	s_swnd;			/* == tcp snd_wnd, in packets */
X	short	s_smxw;			/* == tcp max_sndwnd */
X					/* difference of two spp_seq's can be
X					   no bigger than a short */
X	u_short	s_swl1;			/* == tcp snd_wl1 */
X	u_short	s_swl2;			/* == tcp snd_wl2 */
X	int	s_cwmx;			/* max allowable cwnd */
X	int	s_ssthresh;		/* s_cwnd size threshhold for
X					 * slow start exponential-to-
X					 * linear switch */
X/* transmit timing stuff
X * srtt and rttvar are stored as fixed point, for convenience in smoothing.
X * srtt has 3 bits to the right of the binary point, rttvar has 2.
X */
X	short	s_idle;			/* time idle */
X	short	s_timer[SPPT_NTIMERS];	/* timers */
X	short	s_rxtshift;		/* log(2) of rexmt exp. backoff */
X	short	s_rxtcur;		/* current retransmit value */
X	u_short	s_rtseq;		/* packet being timed */
X	short	s_rtt;			/* timer for round trips */
X	short	s_srtt;			/* averaged timer */
X	short	s_rttvar;		/* variance in round trip time */
X	char	s_force;		/* which timer expired */
X	char	s_dupacks;		/* counter to intuit xmt loss */
X
X/* out of band data */
X	char	s_oobflags;
X#define SF_SOOB	0x08			/* sending out of band data */
X#define SF_IOOB 0x10			/* receiving out of band data */
X	char	s_iobc;			/* input characters */
X/* debug stuff */
X	u_short	s_want;			/* Last candidate for sending */
X	char	s_outx;			/* exit taken from spp_output */
X	char	s_inx;			/* exit taken from spp_input */
X};
X
X#define	nstosppcb(np)	((struct sppcb *)(np)->nsp_pcb)
X#define	sotosppcb(so)	(nstosppcb(sotonspcb(so)))
X
Xstruct	sppstat {
X	long	spps_connattempt;	/* connections initiated */
X	long	spps_accepts;		/* connections accepted */
X	long	spps_connects;		/* connections established */
X	long	spps_drops;		/* connections dropped */
X	long	spps_conndrops;		/* embryonic connections dropped */
X	long	spps_closed;		/* conn. closed (includes drops) */
X	long	spps_segstimed;		/* segs where we tried to get rtt */
X	long	spps_rttupdated;	/* times we succeeded */
X	long	spps_delack;		/* delayed acks sent */
X	long	spps_timeoutdrop;	/* conn. dropped in rxmt timeout */
X	long	spps_rexmttimeo;	/* retransmit timeouts */
X	long	spps_persisttimeo;	/* persist timeouts */
X	long	spps_keeptimeo;		/* keepalive timeouts */
X	long	spps_keepprobe;		/* keepalive probes sent */
X	long	spps_keepdrops;		/* connections dropped in keepalive */
X
X	long	spps_sndtotal;		/* total packets sent */
X	long	spps_sndpack;		/* data packets sent */
X	long	spps_sndbyte;		/* data bytes sent */
X	long	spps_sndrexmitpack;	/* data packets retransmitted */
X	long	spps_sndrexmitbyte;	/* data bytes retransmitted */
X	long	spps_sndacks;		/* ack-only packets sent */
X	long	spps_sndprobe;		/* window probes sent */
X	long	spps_sndurg;		/* packets sent with URG only */
X	long	spps_sndwinup;		/* window update-only packets sent */
X	long	spps_sndctrl;		/* control (SYN|FIN|RST) packets sent */
X	long	spps_sndvoid;		/* couldn't find requested packet*/
X
X	long	spps_rcvtotal;		/* total packets received */
X	long	spps_rcvpack;		/* packets received in sequence */
X	long	spps_rcvbyte;		/* bytes received in sequence */
X	long	spps_rcvbadsum;		/* packets received with ccksum errs */
X	long	spps_rcvbadoff;		/* packets received with bad offset */
X	long	spps_rcvshort;		/* packets received too short */
X	long	spps_rcvduppack;	/* duplicate-only packets received */
X	long	spps_rcvdupbyte;	/* duplicate-only bytes received */
X	long	spps_rcvpartduppack;	/* packets with some duplicate data */
X	long	spps_rcvpartdupbyte;	/* dup. bytes in part-dup. packets */
X	long	spps_rcvoopack;		/* out-of-order packets received */
X	long	spps_rcvoobyte;		/* out-of-order bytes received */
X	long	spps_rcvpackafterwin;	/* packets with data after window */
X	long	spps_rcvbyteafterwin;	/* bytes rcvd after window */
X	long	spps_rcvafterclose;	/* packets rcvd after "close" */
X	long	spps_rcvwinprobe;	/* rcvd window probe packets */
X	long	spps_rcvdupack;		/* rcvd duplicate acks */
X	long	spps_rcvacktoomuch;	/* rcvd acks for unsent data */
X	long	spps_rcvackpack;	/* rcvd ack packets */
X	long	spps_rcvackbyte;	/* bytes acked by rcvd acks */
X	long	spps_rcvwinupd;		/* rcvd window update packets */
X};
Xstruct	spp_istat {
X	short	hdrops;
X	short	badsum;
X	short	badlen;
X	short	slotim;
X	short	fastim;
X	short	nonucn;
X	short	noconn;
X	short	notme;
X	short	wrncon;
X	short	bdreas;
X	short	gonawy;
X	short	notyet;
X	short	lstdup;
X	struct sppstat newstats;
X};
X
X#ifdef KERNEL
Xstruct spp_istat spp_istat;
X
X/* Following was struct sppstat sppstat; */
X#ifndef sppstat
X#define sppstat spp_istat.newstats
X#endif
X
Xu_short spp_iss;
Xextern struct sppcb *spp_close(), *spp_disconnect(),
X	*spp_usrclosed(), *spp_timers(), *spp_drop();
X#endif
X
X#define	SPP_ISSINCR	128
X/*
X * SPP sequence numbers are 16 bit integers operated
X * on with modular arithmetic.  These macros can be
X * used to compare such integers.
X */
X#ifdef sun
Xshort xnsCbug;
X#define	SSEQ_LT(a,b)	((xnsCbug = (short)((a)-(b))) < 0)
X#define	SSEQ_LEQ(a,b)	((xnsCbug = (short)((a)-(b))) <= 0)
X#define	SSEQ_GT(a,b)	((xnsCbug = (short)((a)-(b))) > 0)
X#define	SSEQ_GEQ(a,b)	((xnsCbug = (short)((a)-(b))) >= 0)
X#else
X#define	SSEQ_LT(a,b)	(((short)((a)-(b))) < 0)
X#define	SSEQ_LEQ(a,b)	(((short)((a)-(b))) <= 0)
X#define	SSEQ_GT(a,b)	(((short)((a)-(b))) > 0)
X#define	SSEQ_GEQ(a,b)	(((short)((a)-(b))) >= 0)
X#endif
END-of-netns/spp_var.h
exit



More information about the Comp.bugs.4bsd.ucb-fixes mailing list